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Preface

This volume contains the abstracts of the talks presented at the 24th International Conference
on Types for Proofs and Programs, TYPES 2018, to take place in Braga, Portugal, 18 - 21
June 2018.

The TYPES meetings are a forum to present new and on-going work in all aspects of
type theory and its applications, especially in formalised and computer assisted reasoning and
computer programming. The meetings from 1990 to 2008 were annual workshops of a sequence
of five EU funded networking projects. Since 2009, TYPES has been run as an independent
conference series, funded by COST Action EUTypes since 2016.

Previous TYPES meetings were held in Antibes (1990), Edinburgh (1991), B̊aastad (1992),
Nijmegen (1993), B̊aastad (1994), Torino (1995), Aussois (1996), Kloster Irsee (1998), Lökeberg
(1999), Durham (2000), Berg en Dal near Nijmegen (2002), Torino (2003), Jouy-en-Josas near
Paris (2004), Nottingham (2006), Cividale del Friuli (2007), Torino (2008), Aussois (2009),
Warsaw (2010), Bergen (2011), Toulouse (2013), Paris (2014), Tallinn (2015), Novi Sad (2016),
Budapest (2017).

The TYPES areas of interest include, but are not limited to: foundations of type theory and
constructive mathematics; applications of type theory; dependently typed programming; indus-
trial uses of type theory technology; meta-theoretic studies of type systems; proof assistants
and proof technology; automation in computer-assisted reasoning; links between type theory
and functional programming; formalizing mathematics using type theory.

The TYPES conferences are of open and informal character. Selection of contributed talks
is based on short abstracts; reporting work in progress and work presented or published else-
where is welcome. A formal post-proceedings volume is prepared after the conference; papers
submitted to that must represent unpublished work and are subjected to a full review process.

The programme of TYPES 2018 includes four invited talks by Cédric Fournet (Microsoft
Research, UK), Delia Kesner (IRIF CNRS and Université Paris-Diderot, France), Matthieu
Sozeau (INRIA, France), and Josef Urban (CIIRC, Czech Republic). The contributed part
of the programme consists of 42 talks. One of the sessions of the programme pays tribute to
Martin Hofmann, and includes three of the contributes talks, and an invited talk by Ralph
Matthes (CNRS, IRIT, University of Toulouse, France).

Similarly to the 2011 and the 2013-2017 editions of the conference, the post-proceedings
of TYPES 2018 will appear in Dagstuhl’s Leibniz International Proceedings in Informatics
(LIPIcs) series.

We are grateful for the support of COST Action CA15123 EUTypes, Centro de Matemática
da Universidade do Minho, Conselho Cultural da Universidade do Minho, and Câmara
Municipal de Braga.

We acknowledge the following people for their support in the organization of
TYPES 2018: Fernanda Barbosa, Maria Antónia Forjaz, Cândida Marcelino, Nuno Oliveira,
Alexandra Pereira, Miguel Ayres de Campos Tovar, and Maria Francisca Xavier. We express
our special gratitude to our colleagues in the organizing committee: Cláudia Mendes Araújo
and Maria João Frade.

Braga, June 14, 2018

José Esṕırito Santo and Lúıs Pinto
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Characterization of eight intersection type systems à la Church . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Luigi Liquori and Claude Stolze

Formal Semantics in Modern Type Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Zhaohui Luo

The clocks they are adjunctions: Denotational semantics for Clocked Type Theory . . . . . . . 61

Bassel Mannaa and Rasmus Møgelberg

How to define dependently typed CPS using delimited continuations . . . . . . . . . . . . . . . . . . . . . . 63
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Building verified cryptographic components using F*

Cédric Fournet

Microsoft Research, Cambridge, UK

The HTTPS ecosystem includes communications protocols such as TLS and QUIC, the
X.509 public key infrastructure, and various supporting cryptographic algorithms and con-
structions. This ecosystem remains surprisingly brittle, with practical attacks and patches
many times a year. To improve their security, we are developing high-performance, standards-
compliant, formally verified implementation of these components. We aim for our verified
components to be drop-in replacements suitable for use in mainstream web browsers, servers,
and other popular tools. In this talk, I will give an overview of our approach and our results
so far. I will present our verification toolchain, based on F*: a programming language with
dependent types, programmable monadic effects, support for both SMT-based and interactive
proofs, and extraction to C and assembly code. I will illustrate its application using security ex-
amples, ranging from the functional correctness of optimized implementations of cryptographic
algorithms to the security of (fragments of) the new TLS 1.3 Internet Standard.

See https://fstar-lang.org/ for an online tutorial and research papers on F*, and
https://project-everest.github.io/ for its security applications to cryptographic libraries, TLS,
and QUIC.

I will discuss several ways of using machine learning to automate theorem proving and to
help with automating formalization. The former includes learning to choose relevant facts for
”hammer” systems, guiding the proof search of tableaux and superposition automated provers
by learning from large ITP libraries, and guiding the application of tactics in interactive tactical
systems. The latter includes learning probabilistic grammars from aligned informal/formal
corpora and combining them with semantic pruning, and using recurrent neural networks to
learn direct translation from Latex to formal mathematics. Finally, I will discuss systems that
interleave learning and deduction in feedback loops, and mention some latest developments in
these areas.



Multi Types for Higher-Order Languages

Delia Kesner

IRIF, CNRS and Universit Paris-Diderot, France

Quantitative techniques are emerging in different areas of computer science, such as model
checking, logic, and automata theory, to face the challenge of today’s resource aware computa-
tion.

In this talk we discuss multi types, a.k.a. non-idempotent (intersection) types, which provide
a natural tool to reason about resource consumption. Multi types are applicable to a wide range
of powerful models of computation, such as for example pattern matching, control operators
and infinitary computations.

We provide a clean theoretical understanding of the use of resources, and survey some recent
semantical and operational results in the domain.



The Predicative, Polymorphic Calculus of Cumulative

Inductive Constructions and its implementation

Matthieu Sozeau

INRIA, France

In this presentation, I will give an overview of an extension of the Predicative Calculus
of Inductive Constructions with polymorphic universes and cumulative inductive types, at the
basis of Coq since version 8.7. Polymorphic universes with cumulativity allow the definition of
constructions that are generic in their universes and constraints between them, while keeping
at the source level the lightweight syntax of systems based on typical ambiguity. Cumulative
inductive types extend this further to allow for very liberal (and somewhat surprising) type and
term conversions that subsume the so-called template polymorphism feature of Coq.

We will focus in particular on the set-theoretic model of the calculus that justifies our treat-
ment of cumulativity, and on the combined subtleties of universe polymorphism and Coq’s
higher-order unification algorithm. We will showcase the implementation through striking ex-
amples where universe polymorphism and cumulative inductive types are crucial: to express
syntactical models of cumulative type theories and to faithfully follow informal mathematical
practice while formalizing category theory.

This is joint work with Nicolas Tabareau, Amin Timany and Beta Ziliani.



Machine Learning for Proof Automation and Formalization

Josef Urban

Czech Institute of of Informatics, Robotics and Cybernetics (CIIRC), Czech Republic

I will discuss several ways of using machine learning to automate theorem proving and to
help with automating formalization. The former includes learning to choose relevant facts for
”hammer” systems, guiding the proof search of tableaux and superposition automated provers
by learning from large ITP libraries, and guiding the application of tactics in interactive tactical
systems. The latter includes learning probabilistic grammars from aligned informal/formal
corpora and combining them with semantic pruning, and using recurrent neural networks to
learn direct translation from Latex to formal mathematics. Finally, I will discuss systems that
interleave learning and deduction in feedback loops, and mention some latest developments in
these areas.



Martin Hofmann’s case for non-strictly positive data types

Ralph Matthes

Institut de Recherche en Informatique de Toulouse (IRIT), CNRS and Université Paul Sabatier

In type theory, we normally want all structurally recursive programs to be terminating. To
be a bit more precise, a walk through an inductive structure should stop after some time, and
this independently from the specific code of the program or even the employed data structure.
Least fixed points of antitone operations on types are therefore banned from type-theoretic
systems. The considered operators should be monotone, and even syntactically so. In practice,
this means that the expression that describes the operation should have its formal parameter
only at positive positions. Positivity does not exclude going twice to the left of the arrow
for the function type—only strict positivity would forbid that. The non-strictly positive data
types may not have a naive set-theoretic semantics (as put forward by John Reynolds), but
they exist well in system F (Jean-Yves Girard) in the sense that system F allows to encode
them to form weakly initial algebras, in other words, as data types with constructors and an
iterator for programming structurally recursive functions. As evaluation in system F is strongly
normalizing, all those structurally recursive programs are terminating.

Why are programs with non-strictly positive data types so rare?

In his February 1993 note to the TYPES forum mailing list1, Martin Hofmann crafted a
program with a non-strictly positive data type out of an earlier one in ML (by Mads Tofte)
that used a negative datatype. He claimed that he had “found a (sort of) reasonable program
making nontrivial use of the datatype” he called cont (for continuations), which, in categorical
data type notation would be

µX.1 + ((X → L) → L),

with L the type of lists over some given type. X only occurs non-strictly positively in the type
expression 1 + ((X → L) → L).

The program Martin Hofmann reworked for this data type computes the list of entries of
a binary labelled tree in the breadth first order. In that note, he presents LEGO (by Randy
Pollack) code for its implementation in system F.

In a LATEX draft of 5 pages “Approaches to Recursive Datatypes — a Case Study” (April
1995), Martin Hofmann shows how he got from the negative data type through dependent types
to his proposal. There is also a sketch of a correctness proof by induction over binary trees
(giving the intermediary lemmas to show).

While Martin Hofmann was still at Edinburgh University, these ideas created a lot of interest
in the Mathematical Logic group at Munich University. Ulrich Berger found a verification of
the algorithm that was based on a non-strictly positive inductive relation, while Anton Setzer
clarified why the simple proof by Martin Hofmann worked: by identifying simpler “subtypes”
that still served as invariants for the program. These developments took place still in 1995. In
2000-2002, I further simplified the prerequisites of the verification (the original one by Martin
Hofmann assumed parametric equality), and I met Olivier Danvy in 2002 who saw that cont is
a misnomer, and that one should consider it rather as a type of coroutines and transform other
programs with coroutines into this style.

1http://www.seas.upenn.edu/~sweirich/types/archive/1993/msg00027.html
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Instead, I advocated another non-strictly positive inductive type (previously considered
by Christine Paulin-Mohring, as I understood later), in order to embed Michel Parigot’s λµ-
calculus into system F (published at TLCA 2001 and subsequent work in the post-proceedings
of Logic Colloquium 20032).

Although in 2001, Martin had become the holder of the Gentzen Chair at the University
of Munich, and as such the leader of the group where I worked, I missed all opportunities to
turn his inspiring notes into a paper together with him. Ironically, his ideas had influenced me
more while he had been still in distant places. And this talk should remind the audience how
much Martin’s scientific insights were able to fascinate other researchers, even if they were not
considered as ready to be published by Martin. Sadly, we have to live with these memories
without further opportunities to get new notes from Martin or to work with him. May he rest
in peace.

In a nutshell, I’ll describe the breadth-first traversal algorithm by Martin Hofmann, how it
can be verified, what is needed to do a verification in an intensional setting (system F without
parametric equality) and what else could be programmed in this spirit. Time permitting, I’ll
allow myself some remarks on Martin Hofmann, as I have perceived him (as assistant in his
research group).

2https://www.aslonline.org/books-lnl_24.html
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Resourceful Dependent Types
Andreas Abel

Department of Computer Science and Engineering, Gothenburg University

Quantitative typing integrates resource usage tracking into the type system. The prime exam-
ple is linear lambda-calculus that requires that each variable is used exactly once. Following
Girard’s initial proposal of linear logic, an abundance of substructural type systems have been
proposed that allow fine control over resources. These type systems find their applications in
many areas:

1. Compilation: Cardinality analyses such as strictness, absence (dead code), linearity, or
affine usage [Verstoep and Hage, 2015] enable diverse optimizations in the generated code.

2. Security is an instance of absence analysis: Classified information may not flow to unclas-
sified output.

3. Differential privacy [Reed and Pierce, 2010]: Fuzziness of values is captured by a metric
type system, and sufficient fuzz guarantees privacy in information aggregation.

These type systems annotate variables in the typing context with usage information, i. e., the
context is a finite map from variables x to their type A together with a resource value q. In
the judgment Γ ` t : C, term t of type C can refer to variables x in Γ according to their usage
description q.

The question how to extend quantitative typing to dependent types had been lacking a
satisfactory answer for a long time. The problem can be traced back to the invariant of type
theory that if Γ ` t : C, then Γ ` C : Type, i. e., a well-typed term requires a well-formed type,
in the same context. A judgement like x :1 A ` reflx : (x ≡A x) violates this property, since x
is used twice on the type side.

McBride [2016] cut the Gordian knot by decreeing that types are mental objects that do not
consume resources. In particular, any reference to a variable in a type should count as 0. The
invariant now only stipulates 0Γ `0 C : Type, which erases usage information by multiplication
with 0, and can be seen as the vanilla, resource free typing judgement. McBride’s approach has
been refined by Atkey [2018] into two judgements `1 (resourceful) `0 (resourceless) where the
latter is used for type constructors.

The radical solution however also has some drawbacks. By discounting resources in types in
general, (1) we cannot utilize usage information for optimizing the computation of types during
type-checking; and (2) we cannot interpret types as values, in particular, we lose the option to
case on types. However, type case is useful at least in typed intermediate languages to derive
specialized implementations of data structures and their operations for particular types.

We propose a fresh look at the problem of dependent resource typing, by decoupling resource
information from the typing context Γ. Instead, we track usage information in terms and types
separately by resource contexts γ and δ which map the variables x of Γ to resource quantities
q. The invariant becomes Γ ` tγ : Aδ implies Γ ` Aδ : Type∅, and no extra trickery is needed.
Dependent function types Πq,rAF are indexed by two quantities: q describes how the function
uses its argument of type A to produce the result; r describes how the codomain F uses that
argument to produce the result type.

Resources q, r are drawn from a partially ordered commutative semiring which is positive
(q+ r = 0 implies q = r = 0) and free of zero dividers (qr = 0 implies q = 0 or r = 0). Ordering
q ≤ r expresses that q is more precise as r, in the same sense as subtyping A ≤ B states that A
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is more specific than B. A resource semiring to track linearity would be {ω, 0, 1} with ω ≤ q.
It is a subsemiring of P(N) [Abel, 2015] with ω = N, 0 = {0}, 1 = {1}, pointwise addition and
multiplication, and ≤ = ⊇.

In the following, we list the inference rules for judgment Γ ` tγ : Aδ of a dependently
typed lambda-calculus with a predicative universe hierarchy U`. Herein, we write A q→ B for
the non-dependent function space Πq,0A (λ0_. B).

univ
` Γ

Γ ` U`∅ : U`′∅
`<`′ pi

Γ ` Aδ1 : U`
∅ Γ ` F δ2 : A

r→ U`
δ1

Γ ` (Πq,rAF )δ1+δ2 : U`∅

var
` Γ

Γ ` xx:1 : Aδ
x :Aδ ∈ Γ abs

Γ, x:Aδ1 ` tγ,x:q : (F ·r x)δ2,x:r

Γ ` (λqx. t)γ : (Πq,rAF )δ1+δ2

app
Γ ` tγ1 : (Πq,rAF )δ1+δ2 Γ ` uγ2 : Aδ1

Γ ` (t ·q u)γ1+qγ2 : (F ·r u)δ2+rγ2
sub

Γ ` tγ : Aδ Γ ` Aδ ≤ Bδ
Γ ` tγ : Bδ

Subtyping Γ ` Aδ ≤ A′δ takes imprecision in the resource information into account and is
contravariant for function domains, as usual.

Γ ` Aδ = A′δ : U`
∅

Γ ` Aδ ≤ A′δ
` Γ

Γ ` U`∅ ≤ U`′∅
` ≤ `′

Γ ` A′δ1 ≤ Aδ1 Γ, x:A′δ1 ` (F ·r x)δ2,x:r ≤ (F ′ ·r x)δ2,x:r

Γ ` (Πq,rAF )δ1+δ2 ≤ (Πq′,rA′ F ′)δ1+δ2
q′ ≤ q

Acknowledgments. This work was supported by Vetenskapsrådet under Grant No. 621-
2014-4864 Termination Certificates for Dependently-Typed Programs and Proofs via Refinement
Types and by the EU Cost Action CA15123 Types for programming and verification.
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Reasonable evaluation and sharing. Somewhat counterintuitively, the λ-calculus is
not a good setting for evaluating and representing higher-order programs—it is an excellent
specification framework, but no practical tool implements it as it is. If it were a reasonable
execution model, mechanising the evaluation sequence of a term t on random access machines
(RAM) would have a cost polynomial in the size of t and in the number n of β-steps. In this
way a program evaluating in a polynomial number of steps could indeed be considered as having
polynomial cost, and the number of β-steps would become a reasonable complexity measure.

Unfortunately there is a problem called size explosion: there are families of terms whose
size grows exponentially with the number of evaluation steps, obtained by nesting duplications
one inside the other. In many cases sharing is the cure because size explosion is based on
unnecessary duplications of subterms, that can be avoided if such subterms are instead shared,
and evaluation is modified accordingly. The key point is that sharing-based implementations
compute compact results, whose size does not explode. Sharing does indeed provide reasonable
implementations for the λ-calculus: the first result for weak strategies is by Blelloch and Greiner
in 1995 [4], and the first for strong strategies is by Accattoli and Dal Lago in 2014 [3]. In 2015,
Accattoli and Sacerdoti Coen [1] showed that the optimisations for the strong case can be
implemented with overhead linear in the size of the initial term and in the number of β-steps.
A consequence of their result is that the size of the computed compact result nf(t) is bilinear.

Reasonable conversion and sharing Some higher-order settings need more than eva-
luation of a single term: they also have to check whether two terms t and s are convertible—for
instance to implement the equality predicate, as in Ocaml, or for type checking with dependent
types, as in Coq. These settings usually rely on a set of folklore and ad-hoc heuristics for
conversion, that quickly solve many frequent special cases. In the general case, however, one
first evaluates t and s to their normal forms, and then checks them for equality—actually, for
α-equality because terms in the λ-calculus are identified up to α (renaming of bound variables).

Size explosion forces reasonable evaluations to produce shared results. Sharing equality is
α-equality of the underlying unshared results, that, for conversion to be reasonable, has to be
testable in time polynomial in the sizes of nf(t) and nf(s). Since unfolding the sharing may
take exponential time, sharing equality has to be tested without unfolding, which is tricky.

The literature contains only two algorithms explicitly addressing sharing equality, but none
of these matches the complexity of evaluation. First, a quadratic algorithm by Accattoli and Dal
Lago [2]; second, a O(n log n) algorithm by Grabmayer and Rochel [6], obtained by a reduction
to equivalence of DFAs and treating the more general case of λ-terms with letrec. Thus the
bottleneck for conversion seems to be deciding sharing equality.

Here, we provide the first algorithm that is linear in the size of the shared terms, improving
over the literature: the complexity of sharing equality matches the one of evaluation, providing
a combined bilinear algorithm for conversion, that is the real motivation behind this work.

∗This work is submitted to LICS 2018: the full version is on the first author’s webpage. This
work has been partially funded by the ANR JCJC grant COCA HOLA (ANR-16-CE40-004-01).
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Computing Sharing Equality If a λ-term can be seen as a syntax tree whose root is the
topmost constructor and whose leaves are variables, then a λ-term with sharing is a DAG:
sharing of subterms is the fact that nodes may have more than one parent. Intuitively, two
DAGs represent the same unfolded λ-term if they have the same structural paths, just collap-
sed differently. A natural way of checking sharing equality is to test DAGs for bisimilarity :
our sharing equality is based on what we call sharing equivalences, that are bisimulations
plus additional requirements about names—for α-equivalence—and that they are equivalence
relations.

A key problem is the presence of binders, i.e. abstractions, and the fact that equality on
λ-terms is α-equivalence. Graphically, it is standard to see abstractions as getting a backward
edge from the variable they bound; this creates cycles, and the issue is that bisimilarity with
cycles may not be linear—Hopcroft and Karp’s algorithm [7], the best one, is only pseudo-
linear, that is, with an inverse Ackermann factor. It turns out that cycles induced by binders
are only a graphical representation of scopes and can be removed, but their essence remains:
while two free variables are bisimilar only if they coincide, two bound variables are bisimilar
only when also their binders are bisimilar. Scopes are characterised by a structural property
called domination—exploring the DAG from top to bottom one necessarily visits the binder
before the bound variable—and this property is the key ingredient for a linear algorithm.

Our two-level linear algorithm for sharing equality is inspired by Paterson and Weg-
man’s (shortened PW) linear algorithm for first-order unification [8]. We pushed further the
modularity suggested—but not implemented—by Calvès & Fernández in [5]:

• Blind sharing check: a reformulation of PW without the management of meta-variables
for unification. It is a first-order test on λ-terms with sharing, checking that the unfolded
terms have the same skeleton, but ignoring variable names. It actually computes the sup
of the sharings of t and s, that is the smallest sharing equivalence between the two DAGs.

• Name check: a straightforward algorithm executed after the previous one, testing α-
equivalence by checking that bisimilar bound variables have bisimilar binders and that two
different free variables are never shared. The algorithm is complete thanks to domination
under mild but key assumptions on the context in which terms are tested.
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Abstract

We report on our ongoing effort to implement a library of bicategories in type theory,
specifically in the UniMath library of univalent mathematics. It is developed in the context
of a larger project aimed at defining signatures for dependent type theories and their
models.

1 Introduction

Our goal is to study the categorical semantics of dependent type systems, in univalent type
theory. A crucial step in this project is to set up a formal implementation of the fundamental
category-theoretic definitions. Due to the complexity of the objects under consideration, it
is of fundamental importance that constructions and reasoning can be carried out in a highly
modular way. In this work, we present our attempt at developing such a modular formalization.

2 Background

The UniMath library of univalent mathematics [5] currently contains quite a few results on
1-category theory, but the theory of higher categories, in particular, of bicategories, is not
well-developed yet.

Specifically, one development of bicategories in UniMath has been contributed by Mitchell
Riley1. Riley gives the definition of “univalent bicategories”, and shows that an equivalence of
univalent categories induces an identity between them—a first step towards showing that the
bicategory of univalent categories is univalent. However, his definition of bicategories—in the
style of enrichment in 1-categories—seems not amenable to modular reasoning on these complex
gadgets. Indeed, defining the hom-objects to be categories mixes data and properties in a way
that makes it difficult to use in a proof-relevant setting.

In the this work, we present an alternative formalization of bicategories that avoids this
problem. Additionally, it allows for modular construction of bicategories of complex objects
using a bicategorical version of displayed categories by Ahrens and Lumsdaine [1].

3 Bicategories

The prevalent definition of bicategories in the literature, in the style of weak enrichment over
1-categories, is very concise and easy to check for correctness.

∗Work on this project was done during a research visit of Marco Maggesi to Birmingham funded by the
EUTypes project. Maggesi is grateful to MIUR and INdAM for continuous financial support. This material is
based upon work supported by the Air Force Office of Scientific Research under award number FA9550-17-1-0363.

1https://github.com/UniMath/UniMath/pull/409



Here, we follow an alternative presentation [4] where the structure of 0-cells (objects), 1-cells
(morphisms), and 2-cells is made explict. This approach, in contrast to the former, adheres
intrinsically to a general established design principle in intensional mathematics of strictly
separating data and properties.

4 Displayed bicategories and modularity

Ahrens and Lumsdaine’s displayed categories [1] allow for a modular construction of complex
1-categories from simpler ones, in “layers”. A prototypical example comes from the stratifi-
cation of structures in algebra. For instance, the construction of the category of groups from
the category of sets plus some extra structure can easily be factorized and expressed via the
“displayed group structure” over the displayed monoid structure on the category of sets.

Following this pattern, we give the bicategorical variant of displayed categories, and arrange
the displayed 1-categories into a displayed bicategory over the bicategory of categories. We
then systematically use displayed bicategories to implement several bicategorical constructions.
Some currently implemented examples include direct product, sigma structures, and functor
and cofunctor categories.

These constructions were enough to build in UniMath, in a modular way, the bicategory
CwF of categories with families [2], in the reformulation by Fiore [3, Appendix].

5 Conclusions

Our code is available from the UniMath repository2. It consists of about 4,000 lines of code.
We are planning to extend our “zoo” of constructions of displayed bicategories. In particular,

we are going to study univalent bicategories and modular ways of showing that a given bicate-
gory, constructed from a displayed one, is univalent. Our project on signatures for dependent
type theories will provide a challenging test-bed for the usability of our library.

We are grateful to Peter LeFanu Lumsdaine and Vladimir Voevodsky for helpful discussions
on this subject.
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Abstract
We give a general specification of quotient inductive-inductive types (QIITs). These are
types and type families that are defined inductive-inductively, and simultaneously with their
equalities. By construction, QIITs satisfy UIP. This talk is based on our paper [ACD+18].

The central concept of inductive definitions allows the construction of datatypes such as the
natural numbers, lists and trees by presenting their constructors. We are interested in two
generalisations: firstly, one can allow the mutual inductive definition of families of types, which
may depend on each other; this is known as inductive-inductive definitions [NF13]. Secondly, the
inductive definition of a type can include constructors for its equalities; such types are known
as higher inductive types [LS17] in homotopy type theory. We combine both ideas and give a
specification of inductive-inductive families with higher constructors, where it is built into the
specification that the constructed types satisfy Uniqueness of Identity Proofs (UIP); we call
such types quotient inductive-inductive types (QIITs). An independent specification of QIITs
via codes has recently been given by Kaposi and Kovács [KK18].

Despite not being backed by a specification (until now), the combination of induction-
induction and higher constructors has already been explored. Examples include the Cauchy
reals [Gil17] and the partiality monad [ADK17] (also doable without induction-induction [CUV17]).
In both cases, QIITs allows avoiding the use of countable choice. A further example is the
well-typed syntax of type theory in type theory [AK16], where a type of contexts and type
families of types, terms and substitutions are defined simultaneously with their equalities.

We now give an overview of our framework for specifying QIITs; details and examples can
be found in our paper [ACD+18]. A QIIT is specified by its sort, which encodes the types and
type families that it consists of, and by a sequence of constructors

c : (x : F (X))→ G(X,x) (1)

that in turn are specified by appropriate argument and target functors F and G. Our main
technical contribution is identifying a condition on the target functors G that lead to a well-
behaved theory: we would like them to be continuous, i.e. preserve all limits. However, their
domain might not have many limits to preserve, and so, we are led to the following refined
notion (we write hSet for the category of types satisfying UIP):

Definition 1 (Relative continuity). Let C be a category, C0 a complete category, and U : C ⇒ C0
a functor. If I is a small category, and X : I ⇒ C is a diagram, we say that a cone A→ X in C
is a U -limit cone, or limit cone relative to U , if the induced cone UA→ UX is a limit cone in C0.
A functor C ⇒ hSet is continuous relative to U if it maps U -limit cones to limit cones in hSet.

If C is complete and U creates limits, then relative continuity with respect to U reduces to
ordinary continuity. Recall that the category of elements of a functor F : C → hSet, denoted

∫ C
F ,

has as objects pairs (X,x), where X is an object in C, and x : F X. There is a forgetful functor
U :

∫ C
F ⇒ C, and we will consider relative continuity with respect to this U , for complete

categories C. Using
∫ C
F as the domain of G in (1) means that the target can depend also on

the argument x : F (X).



Specifying Quotient Inductive-Inductive Types Altenkirch, Capriotti, Dijkstra, Kraus, Nordvall Forsberg

Definition 2. A constructor specification (F,G) on a complete category C is given by:

• a functor F : C ⇒ hSet, called the argument functor of the specification;

• a relatively continuous functor G :
∫ C
F ⇒ hSet, called the target functor.

The intuition is that a constructor should only “construct” elements of one of the sorts, or
equalities thereof; mathematically, relative continuity ensures that categories of QIIT algebras
are complete (see below). As expected, point and path constructors (i.e. constructors targeting
one of the sorts, or an equality in it, respectively) have relatively continuous target functors.

Lemma 3. Target functors for point and path constructors are relatively continuous.

Hence our framework covers known examples of QIITs. Every constructor specification (F,G)
gives rise to a category of algebras: objects are pairs (X, θ), where X is an object in C, and
θ : (x : F X)→ G(X,x) is a dependent function (in hSet).

Theorem 4. The category of algebras for every constructor specification is complete.

This means that we can specify constructors on the category of algebras of the previously
introduced constructors, meaning that later constructors can refer to previous ones. A QIIT is
specified by a sequence of such constructors1, with the intended semantics of the specification
being the initial object in the ultimate category of algebras. The fact that the initial object
is an algebra models the introduction rules of the QIIT, and initiality gives a “display map”
formulation of the elimination rules:

Theorem 5. A QIIT algebra X is initial if and only if it satisfies the section induction principle,
stating that every algebra morphism into X has a section.

Unwinding the section induction principle, one can see the similarity with traditional
formulations of elimination rules. We leave proving that initial algebras exist as future work;
this will require further accessibility restrictions on the argument functors.
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Inductive-inductive types (IITs, [4]) allow the mutual definition of a type and a family over
the type, thus generalising mutual inductive types and indexed families of types. Examples
of IITs are the well-typed syntax of type theory [2] or the dense completion of an ordered set
[4, Example 3.3]. In this talk we define signatures for IITs using a domain-specific type theory
(DSTT) where a context is a signature of an IIT. By induction on the syntax of the DSTT,
we describe what it means to have constructors and dependent eliminator for each signature
(following [3]). Then we show that the initial algebras and the dependent eliminator exist: the
initial algebras will be given by terms of the DSTT and the eliminator will be given by the
logical predicate interpretation [1]. Apart from having an embedded syntax of the DSTT, the
metatheory is usual intensional type theory.

Signatures of inductive-inductive types. Our DSTT has an empty universe (we write
underline for El) and a function space where the domain is small (that is, the domain can only
be a neutral term) and there is no λ. We write a⇒ B when B does not mention the input. We
write Γ ` σ : ∆ for a context morphism from Γ to ∆ (a list of terms which provide all types in
∆) and A[σ], t[σ] for substituted types and terms.

Contexts and variables: ` ·
Γ ` A
` Γ, x : A

Γ ` A
Γ, x : A ` x : A

Γ ` x : A Γ ` B
Γ, y : B ` x : A

Universe:
Γ ` U

Γ ` a : U
Γ ` a

Functions with small domain:
Γ ` a : U Γ, x : a ` B

Γ ` (x : a)⇒ B

Γ ` t : (x : a)⇒ B Γ ` u : a

Γ ` t u : B[x 7→ u]

A context Γ in this DSTT is a signature for an IIT. For example, a subset of the intrinsic syntax
of type theory (contexts and types) is given by the signature ·, Con : U, T y : Con ⇒ U, • :
Con, � : (Γ : Con) ⇒ Ty Γ ⇒ Con, U : (Γ : Con) ⇒ Ty Γ , Π : (Γ : Con) ⇒ (A : Ty Γ ) ⇒
Ty (Γ �A)⇒ Ty Γ . Our simpler running example is Θ := (·, N : U, z : N, s : N ⇒ N).

Notion of algebra (–A). By induction on the syntax of the DSTT we define the operation
–A. Given a signature Γ (a context), ΓA is the notion of algebra corresponding to it. The action
of the operation on contexts, types, context morphisms and terms is specified as follows.

` Γ

ΓA ∈ Set

Γ ` A
AA ∈ ΓA → Set

Γ ` σ : ∆

σA ∈ ΓA → ∆A

Γ ` t : A

tA ∈ (γ ∈ ΓA)→ AA(γ)

∗This work was supported by the European Union, co-financed by the European Social Fund (EFOP-3.6.3-
VEKOP-16-2017-00002)
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–A is the standard (set-theoretic) interpretation of the DSTT. For example, (Γ, x : A)A := (γ :
ΓA)×AA(γ), ((x : a)→ B)A(γ) := (α ∈ aA(γ))→ BA(γ, α), UA(γ) := Set and aA(γ) := aA(γ).
Thus for our running example we get natural number algebras: ΘA = (n ∈ Set)×n× (n→ n).

Notion of family over an algebra (–F). For a signature Γ, ΓF is the logical predicate [1]
over ΓA. If γ ∈ ΓA is the initial algebra, ΓA(γ) gives the parameters of the eliminator (motives
and methods). We have ΘF(n, z, s) = (nF ∈ n→ Set)×nF (z)×

(
(x : n)→ nF (x)→ nF (s(x))

)

for any (n, z, s) ∈ ΘA. For a context Γ we have ΓF ∈ ΓA → Set and for a context morphism
Γ ` σ : ∆ we get σF ∈ ΓF(γ) → ∆F(σA(γ)). We omit the specification for types and terms for
reasons of space and we will do similarly for the operations below.

Notion of section (–S). For a signature Γ, an algebra γ ∈ ΓA and a family γF ∈ ΓF(γ),
ΓS(γ, γF ) is the type of sections from γ to γF . For Θ this says that given an algebra (n, z, s)
and a family (nF , zF , sF ) over it, we get a function nF which maps z to zF and s to sF :
ΘS((n, z, s), (nF , zF , sF )) =

(
nS ∈ (α ∈ n)→ nF (α)

)
×
(
nS(z) = zF

)
×
(
nS(s(x)) = sF (nS(x))

)
.

Existence of constructors (–C– ). For every signature Γ, we would like to have an element
of ΓA, the initial algebra or the type and term constructors of the IIT. We define these as
terms of the DSTT. E.g. for Θ, we would like to generate ({t |Θ ` t : n}, z, λx.s x) ∈ ΘA.
We fix a signature Ω and define the operator –CΩ by induction on the syntax of the DSTT.
For a context Γ, we have ΓCΩ ∈ (Ω ` σ : Γ) → ΓA and for a type Γ ` A, we have ACΩ ∈
(Ω ` σ : Γ) × (Γ ` t : A[σ]) → AA(ΓCΩ(σ)). On the universe, –CΩ returns terms of the given
type: UCΩ(σ, a) := {t |Ω ` t : a}, and for a it simply returns the term: aCΩ(σ, t) := t. The
initial Ω-algebra is given by ΩCΩ(idΩ) ∈ ΩA where idΩ is the identity context morphism on Ω.

Existence of dependent eliminator (–E– ). After fixing a signature Ω and given motives
and methods ω ∈ ΩF(ΩC(idΩ)), we define the operation –Eω by induction on the syntax of
the DSTT. For a context Γ it gives ΓEω ∈ (Ω ` σ : Γ) → ΓS(ΓC(σ), σF(ω)). UEω works by
calling the –F operation on its input. Again, the identity substitution is used when deriving the
eliminator itself (note that idΩ

F(ω) = ω): ΩEω (idΩ) ∈ ΩS(ΩC(idΩ), ω). For our example, given
θ ∈ ΘF(ΘC(idΘ)), we get ΘEθ (idΘ) =

(
λt.transport(tC(idΘ), tF(θ)), refl, λt tF .J(refl, tC(idΘ))

)
.

Further work. An Agda formalisation of the operations –C– and –E– is on the way (the
previous operations are formalised). We would also like to extend them to a larger DSTT
describing infinitary constructors and equality constructors as well (quotient inductive-inductive
types). A Haskell implementation of a type theory with IITs using this approach would be also
interesting to experiment with.
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1 Motivation
Many dependently typed languages which are built on foundations like the calculus of construc-
tions (CoC) provide support for indexed inductive types. These are type families which are
inductively defined using constructors that create an instance over arbitrary elements of the
base type (the type of N-indexed vectors being a prominent example). Most of these languages,
e. g. Coq [2] and Lean [3], don’t allow for so called inductive-inductive types in which, for
example, the user mutually defines a type A and a family B in which A may appear in the
index, and where constructors of A and B may refer to the constructors of each other.

Use cases for inductive-inductive types encompass important applications like the internal-
ization of the syntax of dependent type theory itself (“type theory in type theory” [1]) and
the definition of the Cauchy construction of the real numbers [7]. We thus ask the question
whether inductive-inductive types can be emulated in a language that only provides indexed
inductive types, that is, most importantly, how to construct an appropriate eliminator for
these types. The quesion whether this is possible has been brought up in previous studies on
inductive-inductive types [6, 4].

2 Approach
We are given a list of sorts which we want to define and a list of constructors, each with
potential references to others. First we define the category of typed algebras, of which we aim
to construct the initial element. Next, we also define untyped algebras which we obtain by
erasing all the indices from sorts and constructors. The initial object can be constructed using
indexed induction only. To make up for the missing indexing in the untyped algebras, we
introduce an inductively defined well-typedness predicate which contains the information that
a given element of an untyped sort is really indexed by a given index element. The desired
initial object of the category of typed algebras is then given by using this predicate to filter for
well-typed elements. To prove initiality, we construct an inductive relation between elements
of the initial untyped algebra and elements of an arbitrary typed algebra. We then show that
this relation is functional.

3 Results & Future Work
The approach has been formalized for the example of a fragment of an inductive-inductive
syntax of type theory in Agda, and ported to Lean. We aim to use Lean’s meta-language [5] to
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automate the construction and provide a user-defined command to create inductive-inductive
types.

4 Example
As a first example, we looked at the type Con of contexts and the type Ty of types in a
formalized syntax of a type theory, with a constructor nil : Con for an empty context, ext :∏

Γ:Con Ty(Γ) → Con for context extension, unit :
∏

Γ:Con Ty(Γ) for an atomic unit type and
pi :

∏
Γ:Con,A:Ty(Γ) Ty(ext(Γ, A))→ Ty(Γ) for a Π-type. For this example the typed and untyped

algebras are represented by the following Lean code:

structure CT :=
(C : Type u)
(T : C → Type u)
(nil : C)
(ext : Π Γ, T Γ → C)
(unit : Π (Γ : C), T Γ)
(pi : Π Γ A,
T (ext Γ A) → T Γ)

structure CT′ :=
(C : Type u)
(T : Type u)
(nil : C)
(ext : C → T → C)
(unit : C → T)
(pi : C → T → T → T)

inductive S′0 : bool → Type u
| nil : S′0 ff
| ext : S′0 ff → S′0 tt → S′0 ff
| unit : S′0 ff → S′0 tt
| pi : S′0 ff → S′0 tt → S′0 tt → S′0 tt

parameters (M : CT)
def rel_arg : bool → Type u
| ff := M.C
| tt := Σ γ, M.T γ
inductive rel : Π b, S′0 b → rel_arg b → Prop
| nil : rel ff S′0.nil M.nil
| ext : Π Γ A γ a, rel ff Γ γ → rel tt A 〈γ, a〉

→ rel ff (S′0.ext Γ A) (M.ext γ a)
| unit : Π Γ γ, rel ff Γ γ → rel tt (S′0.unit Γ) 〈γ, M.unit γ〉
| pi : Π Γ A B γ a b, rel ff Γ γ → rel tt A 〈γ, a〉 →

rel tt B 〈M.ext γ a, b〉 → rel tt (S′0.pi Γ A B) 〈γ, M.pi γ a b〉
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Semantic subtyping is an approach to define type systems featuring union and intersection types
and a precise subtyping relation. It has been developed for strict languages, and it is unsound
for non-strict semantics. We describe how to adapt it to languages with lazy evaluation.

Semantic subtyping. Union and intersection types can be used to type several language
constructs – from branching and pattern matching to overloading – very precisely. However,
they make it challenging to define a subtyping relation that behaves precisely and intuitively.

Semantic subtyping is a technique to do so, studied by Frisch et al. [1] for types given by:

t ::= b | t→ t | t× t | t ∨ t | t ∧ t | ¬t | Empty | Any where b ::= Int | Bool | · · ·

Types include constructors – basic types b, arrows, and products – plus union t∨ t, intersection
t∧t, negation (or complementation) ¬t, and the bottom and top types Empty and Any (actually,
t1∧t2 and Any can be defined as ¬(¬t1∨¬t2) and ¬Empty). Types can also be recursive (simply,
by considering the types that are coinductively generated by the productions above).

Subtyping is defined by giving an interpretation J · K of types as sets and defining t1 ≤ t2
as Jt1K ⊆ Jt2K. Intuitively, we can see JtK as the set of values which inhabit t in the language.
By interpreting union, intersection, and negation as the corresponding operations on sets, we
ensure that subtyping will satisfy all commutative and distributive laws we expect (e.g., (t1 ×
t2) ∨ (t′1 × t′2) ≤ (t1 ∨ t′1)× (t2 ∨ t′2) or (t→ t1) ∧ (t→ t2) ≤ t→ (t1 ∧ t2)).

This relation is used to type a call-by-value language featuring higher-order functions, data
constructors and destructors (pairs), and a typecase construct which models runtime type
dispatch and acts as a form of pattern matching. Functions can be recursive and are explicitly
typed: their type can be an intersection of arrow types, describing overloaded behaviour.

Semantic subtyping in lazy languages. Current semantic subtyping systems are unsound
for non-strict semantics because of the way they deal with the bottom type Empty, which
corresponds to the empty set of values (JEmptyK = ∅). The intuition is that a (reducible)
expression e can be safely given a type t only if, whenever e returns a result, this result is a
value in t. Accordingly, Empty can only be assigned to expressions that are statically known to
diverge (i.e., that never return a result). For example, the ML expression let rec f x = f x in f ()
has type Empty. Let ē be this expression and consider the following typing derivations, which
are valid in semantic subtyping systems (π2 projects the second component of a pair).

[']
` (ē, 3) : Empty × Int

` (ē, 3) : Empty × Bool

` π2 (ē, 3) : Bool

[']
` λx. 3 : Empty→ Int

` λx. 3 : Empty→ Bool ` ē : Empty

` (λx. 3) ē : Bool

Note that both π2 (ē, 3) and (λx. 3) ē diverge in call-by-value semantics (since ē must be
evaluated first), while they both reduce to 3 in call-by-name or call-by-need. The derivations
are therefore sound for call-by-value, while they are clearly unsound with non-strict evaluation.

Why are these derivations valid? The crucial steps are those marked with ['], which convert
between types that have the same interpretation; ' denotes this equivalence relation. With
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semantic subtyping, Empty× Int ' Empty×Bool holds because all types of the form Empty× t
are equivalent to Empty itself: none of these types contains any value (indeed, product types
are interpreted as Cartesian products). It can appear more surprising that Empty → Int '
Empty → Bool holds. We interpret a type t1 → t2 as the set of functions which, on arguments
of type t1, return results in type t2. Since there is no argument of type Empty (because, in
call-by-value, arguments are always values), all types of the form Empty→ t are equivalent.

In passing, note that somewhat similar problems occur when using refinement types for
non-strict semantics, as studied by Vazou et al. [2] (the false refinement is analogous to Empty).

Our approach. The intuition behind our solution is that, with non-strict semantics, it is
not appropriate to see a type as the set of the values that have that type. In a call-by-value
language, operations like application or projection must occur on values: thus, we can identify
two types if they contain the same values. In non-strict languages, instead, operations also
occur on partially evaluated results which might contain diverging sub-expressions.

The Empty type is important for the internal machinery of subtyping. Notably, the decision
procedure for subtyping relies on the existence of types with empty interpretation (e.g., t1 ≤ t2
if and only if t1 ∧ ¬t2 is empty). In a strict setting, it is sound to assign Empty to diverging
computations. In a non-strict one, though, Empty should be completely empty: no expression
at all should inhabit it. Diverging expressions should have a different type, with non-empty
interpretation. We add this new type, written ⊥, and have it be non-empty but disjoint from the
types of constants, functions, and pairs: J⊥K is a singleton whose element represents divergence.

Introducing the ⊥ type means that we track termination in types, albeit very approximately.
We allow the derivation of types like Int, Int → Bool, or Int × Bool (which are disjoint from
⊥) only for expressions that are statically guaranteed to terminate. In particular, our rules
can only derive them for constants, functions, and pairs. Application and projection, instead,
always have types of the form t∨⊥, meaning that they could diverge. We allow the typing rules
to propagate the ⊥ type. For example, to type the application e1 e2, if Γ ` e2 : t, we require
Γ ` e1 : (t → t′) ∨ ⊥ instead of Γ ` e1 : t → t′, so that e1 is allowed to be possibly diverging.
Then, e1 e2 has type t′ ∨ ⊥. Subtyping verifies t ≤ t ∨ ⊥, so a terminating expression can be
used where a possibly diverging one is expected. Because J⊥K is non-empty, the problematic
type equivalences we have seen do not hold for it. Indeed, ⊥× Int is now the type of pairs whose
first component diverges and the second evaluates to an Int: it is not equivalent to ⊥× Bool.

Typing all applications as possibly diverging is a very coarse approximation, but it achieves
our goal of giving a sound type system that still enjoys most benefits of semantic subtyping.
Indeed, ⊥ can be seen as an “internal” type that does not need to be written explicitly by
programmers. As future work we intend to explore whether we can give a more expressive
system, while maintaining soundness, by tracking termination somewhat more precisely, and to
give a semantic interpretation of types in terms of sets of “results” rather than of “values”.

We have defined this type system for a call-by-need variant of the language studied by Frisch
et al. [1], and we have proved its soundness. The choice of call-by-need stems from the presence
of union and intersection types: indeed, for quite technical reasons, our system is not sound for
call-by-name if we assume that reduction might be non-deterministic.
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In this talk, we will study the later modality in �brations. What would be the motivation
for this? In a type-theoretic setting, the later modality was �rst introduced by Nakano [Nak00]
and afterwards studied by Appel et al. [App+07], Atkey and McBride [AM13], Møgelberg
[Møg14] and Birkedal et al. [Bir+16]. On the semantic side, Milius and Litak [ML17] have
studied the later modality axiomatically, while Birkedal et al. [Bir+12; BM13] studied it for
ωop-chains in the category of sets, called the topos of trees. Since the category of sets provides
a very rich setting for higher-order logic, one can encode most propositions and proofs in that
category. However, syntactic presentations get lost through this encoding. This brings us to
the motivation of this work: extending an arbitrary (syntactic) logic with a later modality,
independently of the presentation of the logic.

As it turns out, �brations provide us a good basis for this project, since they allow us
to deal abstractly with formulas that contain typed variables. For instance, one can organise
syntactic �rst-order logics, dependent type theories, quantitative predicates etc. into �brations.
More precisely, let p : E → B be functor. For I ∈ B, we let EI be the �bre above I that has
objects X ∈ E with p(X) = I and morphisms f : X → Y that ful�l p(f) = idI . A (cloven)
�bration is a functor p : E→ B, such that for every morphism u : I → J in B there is a functor
u∗ : EJ → EI with isomorphisms id∗

I
∼= IdEI

and u ◦ v∗ ∼= v∗ ◦u∗ that ful�l certain coherence
conditions. The functors u∗ are called reindexing or substitution functors. In particular, we
are interested in �brations that are �bred Cartesian closed categories (�bred CCCs), which
intuitively means that we can form the conjunction and implication of formulas in the same
context. More technically, a �bration is a �bred CCC if every �bre EI has �nite products and
exponential objects that are preserved by reindexing functors. The setting of �bred CCCs will
allow us to prove the usual rules of the later modality.

In our study of the later modality, we proceed as follows. Given a category B, an ωop-chain
in B is a functor c : ωop → B, and we denote by B the functor category [ωop,B] that has chains
as objects and natural transformations as morphisms. We show how to obtain from a �bration
p : E → B a �bration p : E → B of ωop-chains. In this �bration, we can de�ne for each chain
c : ωop → B the later modality as a �bred functor I : Ec → Ec and its unit next : Id⇒ I. That
this functor is �bred intuitively means that substitutions distribute over the later modality via
substσ : u∗(Iσ) ∼= I(u∗ σ). The functor I also preserves �bred (�nite) products. To be able
to express and solve �xed point equations we need exponential objects, because for an ωop-
chain σ in E, the solutions of contractive �xed point equations on σ are given by a morphism
löbσ : σIσ → σ, cf. [Bir+12; ML17]. Thus, in the next step we show that the �bration p is a
�bred CCC and that the morphism löbσ exists for each σ, that löb is dinatural in σ and that
it can be used to solve contractive equations. These constructions are summed up in the rules
below, where we leave the usual category theoretical constructions and the equations out. Note
that the rules are proof-relevant, hence apply also to type-theoretic settings.

f : τ → σ

I f : I τ → Iσ

f : τ → Iσ ×I δ

ι−1 ◦ f : τ → I(σ × δ)
f : τ → I(u∗ σ)

subst−1
σ ◦ f : τ → u∗(Iσ)

f : τ → σ

nextσ ◦ f : τ → Iσ

f : τ ×Iσ → σ

löbσ ◦ λf : τ → σ
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Above, we described the later modality and solutions to �xed point equations in general. The
reason for introducing all this machinery is to be able to construct morphisms into coinductive
predicates. Let X ∈ B, we denote by EX the �bre above the constant chain KX . A coinductive
predicate is a �nal coalgebra νΦ for a functor Φ: EX → EX . If νΦ can be constructed as

limit of the ωop-chain
←−
Φ, then morphisms ψ → νΦ in EX are equivalently given by morphisms

Kψ →
←−
Φ in EX . Moreover, if we write Φ for the pointwise application of Φ, then we have

←−
Φ = I

(
Φ
←−
Φ
)
. Finally, given a functor T : EX → EX , we say that T is Φ-compatible if there is

a natural transformation ρ : TΦ⇒ ΦT . For a compatible T , it is easy to construct a morphism
←−ρ : T

(←−
Φ
)
→←−Φ. Putting all of this together, we obtain the following rules.

Kψ→
←−
Φ

ψ→ νΦ

f : τ → I
(

Φ
←−
Φ
)

f : τ →←−Φ

f : τ → T
←−
Φ ρ : TΦ⇒ ΦT (T compatible)

←−ρ ◦ f : τ →←−Φ

In the talk, I will explain these constructions, the lifting of quanti�ers to p, some illustrative
examples and how to obtain a syntax if the �bration p arises from a syntactic logic. Further
details and the extension from ω to any well-founded set are in the preprint [Bas18].
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There is recent interest in modal type theories, e.g. guarded type theory, nominal type
theory [6], clocked type theory [5], cohesive type theory and cubical type theory. In this work
we describe the model theory of Fitch-style [2] modal dependent type theories. These include
nominal type theories and (more recently) clocked type theory. The goal of this work is to
isolate and study a common construction in the models of these modal type theories. The
construction centers around an adjoint pair of operators, where the left adjoint is an operation
on contexts and the right adjoint is an operation on families. For example in nominal type
theory these are given by the rules

Γ ` n /∈ Γ

Γ, [n : N]

Γ, [n : N] ` A

Γ ` N[n : N]A

One can then think of the model construction of these calculi as one of finding a dependent
form of the adjunction

LA→ B

A→ RB

That is, when the function space is given by a Π-type.
We formulate the theory of these dependent adjunctions in the (aptly named) Categories

with families with dependent right adjoints (CwDRA).

Definition 1 (CwDRA). A CwDRA is a CwF [3] with the following added structure:
A functor L:

Γ `
LΓ `

γ : ∆→ Γ

Lγ : L∆→ LΓ
Lid = id L(γ ◦ δ) = Lγ ◦ Lδ

An operation on families:

LΓ ` A
Γ ` RΓA

(RΓA)[γ] = R∆(A[Lγ])

An invertible transpose operation on elements of families:

LΓ ` a : A

Γ ` a : RΓA

Γ ` b : RΓA

LΓ ` b : A
a[Lγ] = a[γ] a = a

Lemma 1. If Γ ` b : RΓA and γ : ∆→ Γ, then b[γ] = b[Lγ]
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Although not provided here, we also describe a syntax and term model of CwFDRA which
can be seen as a dependent version of the ones in [2].

In the model construction of these type theories it is often the case that one starts with
adjoint pair of endofunctors on the category of contexts. It is then natural to ask, what are the
sufficient (resp. necessary) conditions under which this adjunction lifts to a dependent adjunc-
tion? We give the answer to the first question “sufficient conditions” by another construction
called CwF+A. Where the ‘A’ stands for adjunction.

Definition 2 (CwF+A). A CwF+A is a CwF with an adjuntion L a R on contexts along with
a lifting of the right adjoint to families, i.e.

Γ ` A
RΓ ` RA

Γ ` t : A

RΓ ` Rt : RA
RA[Rγ] = R(A[γ]) Rt[Rγ] = R(t[γ])

Along with an isomorphism νΓ,A : RΓ.RA→ R(Γ.A)

RpA ◦ νΓ,A = pRA (RqA)[νΓ,A] = qRA νΓ,A ◦ 〈Rγ,R(a)〉 = R〈γ, a〉

Lemma 2. A CwF+A is a CwDRA and the two notions are equivalence if the CwF is democ-
ractic (i.e. where every context comes from a type [1]).

Moreover we show how one can obtain a CwDRA from a cartesian closed category with
adjoint endofunctors.

Lemma 3. If C is a cartesian closed category and L a R are adjoint endofunctors on C, then
the Giraud construction [4] has the structure of CwDRA.
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Intuitionistic dependent type theory has been proposed as a foundation for constructive
mathematics [9], within which proofs correspond to functional programs with dependent types
which precisely specify their properties [4]. It is the basis for proof assistants and dependently
typed programming languages such as Coq, Agda and Idris which exploit this correspondence.
Its denotational semantics is therefore of interest — both for underpinning these logical foun-
dations (cf. Martin-Löf’s meaning-explanations for typing judgments [8]) — and in formulating
and analysing new type systems — witness, for example, the role of the groupoid model [6]
in the development of homotopy type theory. Most attention has been on models which are
extensional in character (in particular, validating the principle of function extensionality).

Game semantics is also a foundational theory, describing the meaning of proofs and programs
intensionally — i.e. how, rather than what, they compute — in terms of a dialogue between
two players. With related models such as concrete data structures [5] it has been used to
give interpretations of many programming languages and logical systems. These models are
distinguished by desirable properties, notably, full abstraction [2, 7] and full completeness [1],
but also connections to resource-sensitive computation and linear logic, direct representations
of effectful computation, and the possibility of extracting computational content. Extending
game semantics to dependent type theory is therefore a natural objective. It is also challenging,
with little progress in this direction until recently [3]. Arguably, one source of difficulty is that
the intensional representation of terms as strategies, which progressively reveal themselves by
interaction, does not extend to types. This may reflect an intuition that types are static
specifications and programs are more dynamic computational objects, but raises the question
— how can one depend on the other? A related problem is: how can we interpret types
themselves as terms of some special type (i.e. a universe) — a principle from which dependent
type theory derives much of its expressive power — if the meanings of types and terms are
defined in different ways?

We present solutions to these two problems, in the form of a new type theory, and a deno-
tational semantics and categorical model for it. They are based on two “semantic universes” —
intensional and extensional — of terms and types (or, more precisely, type and term formation
judgments). Each of these has its own dependent type theory, and one can lift judgments from
the intensional world to the extensional one — a form of cumulativity (corresponding to sending
a program to the function it computes) — while the extensional universe contains a type of
intensional types, so that type-families and type-operators can be represented as terms at this
type.

Terms and types are interpreted as sequential algorithms and concrete data structures of
a generalized form in the intensional universe, and as stable dependent functions and event
domains in the extensional one. The concrete data structures themselves form an event domain,
with which we may interpret an (extensional) universe type of (intensional) types.



The main technical challenge consists in the intensional interpretation of dependent types.
Unfolding play in a dependent game constrains and enables future moves both explicitly and
implicitly. We can capture this precisely by representing it as a stable function into the event
domain of concrete data structures; we use its trace to define dependent product and sum con-
structions as it captures precisely how unfolding moves combine with the dependency to shape
the possible interaction in the game, forming a bridge between the intensional and extensional
worlds. Since each strategy computes a stable function on the states of a concrete data struc-
ture, we can lift typing judgements from the intensional to the extensional setting and interpret
the cumulativity of our universes, giving an expressive type theory with recursively defined type
families and type operators.

We define an operational semantics for intensional terms, giving a functional programming
language based on our type theory, and prove that our semantics for it is computationally
adequate. Adding a non-local control operator on intensional terms demonstrates that our
type system can accommodate effectful computation, as well as leading to a full abstraction
result for our model. Since it allows recursively defined type families, our type theory is very
expressive but also partial, containing divergent programs at every type. By restricting to
hereditarily total strategies we give a fully complete semantics of the recursion-free fragment.
Additionally, our model enjoys an interesting interpretation of identity types. We leave the
semantics of a more expressive total theory (i.e. with inductive rather than recursive types) as
future work.
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Maintaining multiple versions of a software system is a laborious and challenging task,
which is many times a strong requirement of the software development process. Such hurdle
is justified by needs of backward compatibility with libraries or existence of legacy equipment
with particular constraints. It is also an intrinsic requirement of software product lines that
target multiple target platforms, service, or licensing levels [7].

A crucial example of a high variability context is an operating system where hundreds of
variants need to be maintained to cope with all the different target architectures [1]. We find
another important example in mobile applications, where server and client code need to be
updated in sync to change structure of the interface or the semantics of webservices. However,
it is always the case that older versions of server code must be maintained to support client
devices that are not immediately updated. The soundness of a unique and common code corpus
demands a high degree of design and programming discipline [8], code versioning, branching
and merging tools [12], and sophisticated management methods [11, 9]. For instance, in loosely-
coupled service-oriented architectures, where the compatibility guaranties between modules are
almost non-existent, special attention is needed to maintain the soundness between multiple
versions of service end-points (cf. Twitter API [13]).

Another issue regarding variability is the evolution of software. Arguably, existing language-
based analysis tools for service orchestrations do not really account for evolution [14]. Neverthe-
less, there are other language- and type-based approaches that focus on dynamic reconfiguration
and evolution of software [3, 4], hot swapping of code [10], and variability of software [5], that
complement the evolution process with tools, and ensure that each version is sound. However,
related versions of a software system usually share a significant amount of code, and there are
no true guaranties of the sound co-existence of versions and sound transitions between versions
at runtime. Such a need is relevant for monolithic software that must provide different versions
in the same code base, and it is crucial in the context of service-based architectures. We have
presented prior work to check the soundness of service APIs and the runtime transition between
versions [2]. However, special hand crafted code was needed to maintain the semantic coherence
of the versions of the state. Hence, we believe that the potential impact of a language-based tool
supporting variability and a sound co-existence of versions is very high. By checking incremental
evolution development it provides gains in safety and increases developer productivity.

Our approach is thus to provide a lightweight formal platform to solve the problem of
multiplicity of code versions, while ensuring that the correct state transformations are executed
when crossing contexts from one version to another. Our approach is a generalization of the
main idea in [2] that keeps all versions well-typed at one given time. We consider one source file
containing the code for all versions, and analysed as a whole. Versions and transitions between
versions are made explicit in this model, as to represent code evolution steps. This code base
is an analogy for a view over the entire history of a versioned code repository. Such a view
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can be navigated with the help of a smart development environment that allows a developer to
navigate in time, and identify errors in the evolution process.

We extend Featherweight Java (FJ) [6] with a type discipline that ensures that the evolution
of state and functionality is captured and analysed. In a versioned FJ program, each element
of a class is declared in a specific version context, and each expression is typed and executed
with relation to a given version. Special key versions are used to mark state snapshots, where
state variables and method types can change. Regular versions allow for the implementation of
methods to be changed while maintaining their signature. Class constructors are used to define
typed lenses between versions, declaring how an object (state) is legally translated from one
version to another. Version contexts are tracked and transitions are only possible if there is a
declared state transition. Any illegal version context crossing is dimmed as a typing error.

Such a type-based approach to the problem of maintaining multiple versions of a code base
paves the ground for software construction and analysis tools that operate on main-stream
languages and supporting runtime environments. Standard subject reduction results ensure
that the ecosystem of versions is well formed and that any “view” on the code base is sound.

This work is supported by NOVA LINCS UID/CEC/04516/2013, COST CA15123 - EUTYPES
and FC&T Project CLAY - PTDC/EEI-CTP/4293/2014.
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The aim of this work is to combine gradual typing, as introduced by Siek and Taha [3], with
polymorphic union and intersection types as defined in the semantic subtyping approach [2].

Semantic subtyping is a technique by Frisch et al. [2] to define a type theory for union, inter-
section, and negation type connectives, in particular in the presence of higher-order functions.
It consists in defining a semantic interpretation of types as sets (e.g., sets of values of some
language) and then defining the subtyping relation as set-containment of the interpretations,
whence the name of set-theoretic types. The advantage is that, by definition, types satisfy
natural distribution laws (e.g., (t × s1) ∨ (t × s2) and t × (s1∨s2) are equivalent and so are
(s→ t1) ∧ (s→ t2) and s→ (t1 ∧ t2)).

Gradual typing is a recent approach that combines the safety guarantees of static typing
with the flexibility and development speed of dynamic typing [3]. The idea behind it is to intro-
duce an unknown type, often denoted by “?”, used to inform the compiler that additional type
checks may need to be performed at run time. Programmers can add type annotations to a pro-
gram gradually and control precisely how much checking is done statically versus dynamically.
The typechecker ensures that the parts of the program that are typed with static types—i.e.,
types that do not contain “?”—enjoy the type safety guarantees of static typing (well-typed
expressions never get stuck), while the parts annotated with gradual types—i.e., types in which
? occurs—enjoy the same property modulo the possibility to fail on some dynamic type check.

In this work we explore a new idea to interpret gradual types, namely, that the unknown
type ? acts like a type variable, but a peculiar one since each occurrence of ? can be substituted
by a different type. More precisely: a semantics of gradual types can be given by considering
each occurrence of ? as a placeholder for a possibly distinct type variable. We believe this idea to
be the essence of gradual typing, and we formalize it by defining an operation of discrimination
(denoted by �) which replaces each occurrence of ? in a gradual type by a type variable.

Discrimination is the cornerstone of our semantics for gradual types: by applying discrimi-
nation we map a gradual type into a polymorphic set-theoretic type; then we use the semantic
interpretation of the latter into a set, to interpret, indirectly, our initial gradual type. We
use this semantic interpretation to revisit some notions from the gradual typing literature: we
restate some of them, make new connections between them, and introduce new concepts. In
particular, we use discrimination to define two preorders on gradual types: the subtyping re-
lation (by which τ1 ≤ τ2 implies that an expression of type τ1 can be safely used where one
of type τ2 is expected) and the materialization relation (τ1 4 τ2 iff τ2 is more precise—i.e., it
has the same form but fewer occurrences of ?—than τ1). Using these preorders, we can define
a gradual type system in a declarative form where terms are typed with standard rules (e.g.,
those of Hindley-Milner type systems) plus two non-syntax-directed rules corresponding to the
two relations: subsumption (for subtyping) and materialization. The simplicity of this exten-
sion contrasts with current literature where gradual typing is obtained by embedding tests of
consistency or of consistent subtyping (two non-transitive relations) in elimination rules.

Finally, our formalization partially brings to light the logical meaning of the cast language,
the target language used by the compiler to add the dynamic type checks that ensure type safety.
In our framework, expressions of the cast language encode (modulo the use of subsumption)
the type derivations for the gradually-typed language. As such, the cast language looks like
the missing ingredient in the Curry-Howard isomorphism for gradual typing disciplines. An
intriguing direction for future work is to study the logic associated to these expressions.
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A glimpse of formalization. We define subtyping on gradual types by discrimination, that
is, by converting occurrences of ? to type variables to obtain static types (i.e., types without
?). Then, we reuse the existing semantic subtyping relation for polymorphic set-theoretic static
types. That is, we define subtyping as

τ1 ≤ τ2 def⇐⇒ ∃t1 ∈ �(τ1), t2 ∈ �(τ2). t1 ≤t t2
where �(τ) is the set of the possible discriminations of τ and where ≤t is the subtyping relation
on polymorphic set-theoretic types defined in [1] (we use the meta-variables τ and t for gradual
and static types, respectively). It turns out that in order to check subtyping, it is not necessary
to consider all the possible discriminations of the two types. It suffices to check that the
relation holds when we replace in both types all covariant occurrences of ? by one variable and
all contravariant occurrences by a second variable different from the first (this property holds
only for deciding subtyping and not, say, for typing: functions of type ?→ ?→ Int and of type
α→ α→ Int are completely different beasts).

The materialization relation on gradual types τ1 4 τ2 is defined as follows:

τ1 4 τ2
def⇐⇒ ∃t1 ∈ �(τ1).∃θ. t1θ = τ2

where θ is a substitution mapping the variables inserted by discrimination to gradual types. It
turns out that this new definition characterizes the inverse relation of the “precision” relation
of [4], it extends it to set-theoretic types and generalizes it since it is (type) syntax agnostic.
We use these typing rules:

Γ(x) = ∀~α. τ
Γ ` x : τ [~t/~α]

Γ, x : t ` e : τ

Γ ` (λx. e) : t→ τ

Γ, x : τ ′ ` e : τ

Γ ` (λx : τ ′. e) : τ ′ → τ

Γ ` e1 : τ ′ → τ Γ ` e2 : τ ′

Γ ` e1 e2 : τ

Γ ` e1 : τ1 Γ, x : ∀~α. τ1 ` e2 : τ

Γ ` let x = e1 in e2 : τ
~α ] Γ [≤]

Γ ` e : τ ′

Γ ` e : τ
τ ′ ≤ τ [4]

Γ ` e : τ ′

Γ ` e : τ
τ ′ 4 τ

The first five rules are standard rules for Hindley-Milner type systems, with the subtlety that
function parameters can be assigned gradual types only if they are explicitly annotated.

The type system is declarative insofar as the two key relations on gradual types, subtyping
and materialization, are added to the system by two specific non-syntax-directed rules, [≤]
and [4], stating that these relations can be used in any context. This is a novelty and one of
the contributions of our work. Hitherto, gradual typing was obtained by inserting checks in
elimination rules; although this describes the algorithmic aspects of the implementation, it hides
the logical meaning of “graduality”. Rule [≤] is standard (but uses a new subtyping relation),
and states that the type of every well-typed expression can be subsumed to a supertype. Rule
[4] is new (but uses a relation already existing in the literature on gradual types) and is the
counterpart of subsumption for the precision relation. It states that we can subsume every
well-typed expression to a more precise type obtained by replacing some occurrences of ? by a
gradual type: this is a declarative way to embed consistency checks in the type system.

[1] G. Castagna and Z. Xu. Set-theoretic foundation of parametric polymorphism and subtyping. In
ICFP ’11, 2011.

[2] A. Frisch, G. Castagna, and V. Benzaken. Semantic subtyping: dealing set-theoretically with
function, union, intersection, and negation types. Journal of the ACM, 55(4), 2008.

[3] J. G. Siek and W. Taha. Gradual typing for functional languages. In Proceedings of Scheme and
Functional Programming Workshop, 2006.

[4] J. G. Siek, M. M. Vitousek, M. Cimini, and J. T. Boyland. Refined criteria for gradual typing. In
LIPIcs-Leibniz International Proceedings in Informatics, volume 32, 2015.
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When talking about dependently typed programming languages such as Coq and Agda, it
is traditional to start with an example involving vectors, i.e. length-indexed lists:

data Vector (A : Set) : (n : N)→ Set where
nil : Vector A zero
cons : (m : N)(x : A)(xs : Vector A m)→ Vector A (suc m)

(1)

This definition of vectors as an indexed family of datatypes is very intuitive: we take the
definition of lists and ornament them with their length. Alternatively, we can also define
vectors by recursion on the length:

Vector : (A : Set)(n : N)→ Set
Vector A zero = ⊤
Vector A (suc n) = A × Vector A n

(2)

This transformation of an indexed family of inductive datatypes (or indexed datatype for short)
into a recursive definition has a number of benefits:

• Vector inherits η-laws from the record types ⊤ and A × B: every vector of length zero is
definitionally equal to tt : ⊤, and every vector xs : Vec A (suc n) is definitionally equal to
the pair (fst xs, snd xs) where fst xs : A and snd xs : Vector A n.

• We get the forcing and detagging optimizations from Brady et al. (2004) for free: we do
not have to store the length of a vector, and not even whether it is a nil or a cons.

• There are no restrictions on the sorts of the types of forced indices; they can be in a bigger
sort than the datatype itself. In particular, this allows us to define indexed datatypes
in a proof-irrelevant universe such as Prop, as long as the constructor can be uniquely
determined from the indices and all non-forced constructor arguments are in the proof-
irrelevant universe themselves.

• The recursive occurrences of the datatype do not have to be strictly positive: they only
have to use a structurally smaller index. This allows us to define stratified types as in
Beluga (Pientka, 2015).

While this transformation works for vectors, it is not possible for all datatypes. For example,
the recursive definition of N by the equation N = ⊤ ⊎ N is invalid since it is not terminating.
This explains why we cannot allow η-laws for all datatypes.

As another counterexample, consider the datatype Image (A B : Set)(f : A→ B) : B → Set
with one constructor image : (x : A) → Image A B f (f x). Image cannot be defined by
pattern matching on y : B since f x is not a pattern. We can instead transform the index
into a parameter by introducing an equality proof: Image A B f y = Σ(x:A)(f x ≡B y). This
transformation removes the non-pattern index and hence allows us to match against an element
of Image A B f u even when u is not a variable. On the other hand, this transformation does
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not enable us to have large indices: we cannot define Image in Prop since both A and f x ≡B y
have to fit in the sort of Image.

Both these transformations for removing the indices from a datatype definition as described
above are well known, but so far the only way to get their benefits was to apply them by hand.
This means that we also have to define terms for the constructors and the elimination principle
ourselves, and we cannot rely on built-in support for indexed datatypes such as dependent
pattern matching.

We present a fully automatic and general transformation of an indexed datatype to an
equivalent definition of a type as a case tree. This transformation generates not just the type
itself but also terms for the constructors and the elimination principle. It exposes eta laws for
datatypes when there is only a single possible constructor for the given indices, and removes
non-pattern indices by introducing equality proofs as new constructor arguments.

Our transformation is similar to the elaboration of dependent pattern matching (Goguen
et al., 2006). It uses pattern matching on the indices where it can, and introduces equality
proofs where it must. First we elaborate the datatype declaration to a case tree where each
internal node indicates a case split on one of the indices, and each leaf node contains some
(possibly zero) telescopes for the arguments of each constructor. For Vector we get:

Vector = λA, n. casen
{

zero 7→ ()
suc m 7→ (x : A)(xs : Vector A m)

}
(3)

Any non-constructor patterns and non-linear variables are dealt with by replacing them with
fresh variables and introducing equality types on the right-hand side. For Image we get:

Image = λy. (x : A)(p : f x ≡B y) (4)

Once we have a case tree, it is straightforward to construct a definition for the datatype itself,
as well as for the constructors and the eliminator.

Our approach is similar to the notion of case-splitting datatypes of Dagand and McBride
(2014), but we do not require any annotations from the user. One could however imagine
extending our approach with some user annotations to guide the elaboration process, similar
to the inaccessible patterns from dependent pattern matching.

For a long time datatypes have been discriminated against by refusing to give them eta
equality and restricting the sort of their indices. We say: no more! Let vectors be records, too.
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Message passing is a key mechanism used to coordinate concurrent processes. The order
in which a process consumes messages may coincide with the order in which they arrive at
destination (ordered processing) or may depend on some intrinsic property of the messages
themselves, such as their priority, their tag, or the shape of their content (out-of-order or
selective processing). Ordered message processing is common in networks of processes connected
by point-to-point channels. Out-of-order message processing is common in networks of processes
using mailboxes, into which processes concurrently store messages and from which one process
selectively receives messages. This communication model is typically found in the various
implementations of actors such as Erlang, Scala and Akka, CAF and Kilim. Out-of-order
message processing adds further complexity to the challenging task of concurrent and parallel
application development: storing a message into the wrong mailbox or at the wrong time,
forgetting a message in a mailbox, or relying on the presence of a particular message that is
not guaranteed to arrive in a mailbox are programming mistakes that are easy to do and hard
to detect without adequate support from the language and its development tools. Type-based
static analysis techniques can help developers in detecting mistakes like these. In this respect,
we make the following contributions:

• We introduce mailbox types, a new kind of behavioral types that allow us to describe
mailboxes subject to selective message processing. Incidentally, mailbox types also provide
precise information on the size of mailboxes that may lead to valuable code optimizations.

• We define a mailbox type system for the mailbox calculus, a mild extension of the asyn-
chronous π-calculus featuring tagged messages, selective inputs and first-class mailboxes.

• We prove three properties of well-typed processes: the absence of failures due to unexpected
messages (mailbox conformance); the absence of pending activities and messages in
irreducible processes (deadlock freedom); for a non-trivial class of processes, the guarantee
that every message can be eventually consumed (junk freedom).

Several behavioral type systems that enforce safety properties of communicating processes
have already been studied. In particular, session types [8] have proved to be an effective
formalism for the enforcement of communication protocols and have been applied to a variety
of programming paradigms and languages, including those using mailbox communications.
However, session types are built using connectives expressing choice and sequential protocol
composition and therefore are specifically designed to address ordered interactions over channels.
In contrast, mailbox types are elements of a commutative Kleene algebra [4] that embody the
unordered nature of mailboxes and enable the description of mailboxes concurrently accessed by
several processes, abstracting away from the state and behavior of the objects/actors/processes
using these mailboxes. The fact that a mailbox may have different types during its lifetime is
entirely encapsulated by the typing rules and not apparent from mailbox types themselves.

In the pure actor model [7, 1], each actor owns a single mailbox and the only synchronization
mechanism is message reception from such mailbox. The practice of programming with actors,
however, is not that simple. For example, it is a known fact that the implementation of complex
coordination protocols in this model is challenging. These difficulties have led programmers to mix



Mailbox Types de’Liguoro, Padovani

the actor model with different concurrency abstractions [9, 11], to extend actors with controlled
forms of synchronization [12] and to consider actors with multiple/first-class mailboxes [6, 10, 3].
In fact, popular implementations of the actor model feature disguised instances of multiple/first-
class mailbox usage, even if they are not explicitly presented as such: in Akka, the messages that
an actor is unable to process immediately can be temporarily stashed into a different mailbox [6];
in Erlang, hot code swapping implies transferring at runtime the input capability on a mailbox
from a piece of code to a different one [2]. As a consequence, static analysis techniques targeting
the pure actor model fall short at addressing real-world programs, which tend to use a richer
set of concurrency abstractions and to mix different concurrency models. The mailbox calculus
is general enough to subsume the actor model and, additionally, to model a broader range of
systems with a dynamic communication topology and a varying number of processes mixing
different concurrency abstractions (including locks, futures, multiple and first-class mailboxes).

Besides the potential applications of this work to the analysis of communicating processes,
mailbox types and the type system for the mailbox calculus exhibit intriguing analogies with
(polarized) linear logic and its proof system. We plan to investigate the exact relationship
between our type system and linear logic in future work.

Full details on our type system and formal proofs of the results can be found in the technical
report [5].
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Polymorphic λ-calculus (also known as Girard's �system F� [3] or λ2 [2]) is directly related
to intuitionistic second-order propositional logic (IPC2) via the Curry�Howard isomorphism
(for an overview see [5]). In particular, provability in the implicational fragment of IPC2 (is
a given formula an IPC2 theorem?) corresponds to inhabitation in system F (given a type, is
there a term having that type in system F?).

Provability in IPC2 was shown by Löb to be undecidable [4]. The proof itself is by reduction
from provability in �rst-order predicate logic via a semantic argument. Since the original
proof is heavily condensed (14 pages), Arts in collaboration with Dekkers provided a fully
unfolded argument [1] (approx. 50 pages) reconstructing the original proof. Later, Sørensen and
Urzyczyn developed a di�erent, syntax oriented proof showing undecidability of inhabitation in
system F [5, Section 11.6] (6 pages, moderately condensed).

In order to show undecidability of provability in IPC2, each of the above approaches embeds
�rst-order predicate logic into IPC2. However, if one is solely interested in a concise and rigorous
proof (e.g. for formalization or didactics), then there is no need for a full embedding. In fact,
we can pursue a di�erent approach to show undecidability of inhabitation in system F. In this
extended abstract, we sketch a reduction from solvability of Diophantine equations (is there an
integer solution to P (x1, . . . , xn) = 0 where P is a polynomial with integer coe�cients?) to
inhabitation in system F. We argue that, compared to the previous approaches, the sketched
reduction is more accessible for formalization and more comprehensible for didactic purposes.

First, let us �x some notation. Let type variables be ranged over by a, b, c, . . ., we de�ne
polymorphic types ranged over by σ, τ, ρ, . . . as

σ, τ, ρ ::= a | σ → τ | ∀a.σ

Let M,N, . . . be ranged over Church-style polymorphic λ-calculus terms de�ned as

M,N ::= x | (M N) | (λx : σ.M) | (Λa.M) |M τ

Let ∆ = {x1 : σ1, . . . , xn : σn} denote �nite type environments. Typing rules of system F
deriving judgements ∆ `M : σ are as usual [5, Section 11.2].

As a starting point, we use the following Problem 1, which is undecidable by reduction
(routine polynomial decomposition) from solvability of Diophantine equations.

Problem 1. Given a set A = {e1, . . . el} of constraints over V = {a1, . . . , an} where each e ∈ A
is of shape either a

.
= 1 or a

.
= b + c or a

.
= b · c for some a, b, c ∈ V, does there exist a

substitution ζ : V → N that satis�es A?

Reducing Problem 1 to inhabitation in system F it su�ces to axiomatize natural number
addition and multiplication. Let us �x an instance of A of Problem 1 over variables {a1, . . . , an}.
In the remainder of this long abstract we sketch the construction of a type environment ∆A

and type τA such that A has a solution i� there exists a term M such that ∆A `M : τA.
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To simplify notation, let us de�ne the following types (where †,1, . . . are standard type variables)

† σ = σ → † U(σ) = (†σ → •1)→ (σ → •2)→ u

S(σ, τ, ρ) = (†σ → •1)→ (†τ → •2)→ (†ρ→ •3)→ s

P (σ, τ, ρ) = (†σ → •1)→ (†τ → •2)→ (†ρ→ •3)→ p

a
.
= 1 = P (1,1, a) a

.
= b+ c = S(b, c, a) a

.
= b · c = P (b, c, a)

Intuitively, the type variable 1 represents 1 ∈ N, the type U(σ) signi�es that σ is an element of
a universe U , and S(σ, τ, ρ) (resp. P (σ, τ, ρ)) signi�es that the sum (resp. product) of the two
elements σ and τ is ρ. We axiomatize natural number arithmetic as follows

∆N = {xu : ∀a.
(
U(a) → ∀b.(U(b) → S(a,1, b) → P (b,1, b) → N) → N

)
,

xs : ∀abcde.
(
U(a) → U(b) → U(c) → U(d) → U(e) →

S(a, b, c) → S(b,1, d) → S(c,1, e) → (S(a, d, e) → N) → N
)
,

xp : ∀abcde.
(
U(a) → U(b) → U(c) → U(d) → U(e) →

P (a, b, c) → S(b,1, d) → S(c, a, e) → (P (a, d, e) → N) → N
)
, yU(1)

u : U(1), yP (1,1,1)
p : P (1,1,1)}

Type assumptions in ∆N encompass the following assertions about members of a universe U
• yU(1)

u asserts that 1 ∈ U and y
P (1,1,1)
p asserts that 1 · 1 = 1

• xu asserts that for any a ∈ U there is b ∈ U such that a+ 1 = b and b · 1 = b

• xs asserts for a, b, c, d, e ∈ U : if a+ b = c, b+ 1 = d and c+ 1 = e, then a+ d = e

• xp asserts for a, b, c, d, e ∈ U : if a · b = c, b+ 1 = d and c+ a = e, then a · d = e

Let ∆A = ∆N ∪ {xA : ∀a1 . . . an.
(
U(a1) → . . . → U(an) → e1 → . . . → el → N

)
} and

τA = N. We are able to establish soundness (cf. Theorem 1) and completeness (cf. Theorem 2)
of our encoding.

Theorem 1 (Soundness). If ∆A `M : τA for some M , then A has a solution.

Theorem 2 (Completeness). If A has a solution, then ∆A `M : τA for some M .

A rigorous proof of soundness by routine case analysis uses the key property of system F
that any inhabited type is inhabited by some β-normal η-long Church-style term. The proof of
completeness is by direct construction of an inhabitant for a given solution of A. A formalization
of the above reduction is currently under development.
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Abstract

This talk will present a comparative analysis of some interpretations of constructive set
theories into type theories. The analysis will be carried out by factoring the interpretations
via logic-enriched type theories, in this way the key principles used in the interpretations
are isolated and can be compared.

The comparison is between on the one hand Aczel’s interpretation of CZF into Martin-
Löf type theory [1], and on the other hand the interpretations developed recently [4], [5]
and [2] of Myhill’s Constructive Set Theory into homotopy type theory.

1 Introduction and Motivation

In this talk we will consider two constructive set theories: Aczel’s Constructive Zermelo-Fraenkel
(CZF ) and Myhill’s Constructive Set Theory (CST ). The only difference between the two is
that CST includes the Replacement axiom and the Exponentiation axiom1, whereas CZF
has the Strong Collection and Subset Collection axioms which strengthen Replacement and
Exponentiation, respectively.

In [1], Aczel developed an interpretation of CZF into Martin-Löf type theory in which
formulas are interpreted using the propositions-as-types correspondence. This interpretation is
referred as set-as-trees since nodes represent sets and edges the membership relation, so that
the root represents the given set. This intuition is formalised by interpreting the universe of
sets as the type V := (Wx : U)x.

Recently, new interpretations of CST into homotopy type theory have been developed in
the HoTT book [5], by Gylterud [4], and by the author [2], all inspired by Aczel’s interpretation.

These interpretations make use of homotopical notions such as homotopy levels, the Univa-
lence axiom and Higher Inductive Types. In particular, [2] introduced a family of interpreta-
tions J·Kk,h, where k represents the homotopy level of the interpretation of sets and h the one
of propositions. Among those, the interpretations that validate the axioms of CST are J·Kk,1
for 2 ≤ k ≤ ∞.

The interpretations in the HoTT book, by Gylterud and the J·Kk,1 are equivalent (see [4]
and [2]).

A natural question is then to relate and compare these equivalent interpretation of CST
into homotopy type theory with Aczel’s interpretation of CZF into Martin-Löf type theory.

Logic-enriched type theories provide a convenient and conceptually clear framework for this
kind of analysis. These are type theories that in addition to a pure type-theoretic part have
primitive formulas and judgments for formulas Γ ` φ1, . . . , φn ⇒ φ. Free variables of formulas
range over types, which can be quantified, e.g. (∀x : A)φ(x), and the usual logical rules define
connectives and quantifiers. The propositions-as-types correspondence is not a default feature
but can be added easily.

1Given two sets A,B, there exists the set of functions BA
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2 Overview of the Results

Among the equivalent interpretations of CST we will focus on J·K∞,1 which is the best suited
for this kind of analysis.

The paper [3] provides an analysis of Aczel’s interpretation. The interpretation is factored
through a logic-enriched type theory consisting of Martin-Löf type theory with intuitionistic
logic and two new rules: a propositions-as-types principle (PU), and the type-theoretic axiom
of choice formulated in the language of the logic-enriched type theory (AC).

This talk will present a similar factorisation of the interpretation J·K∞,1 through a logic-
enriched type theory with three new rules: a propositions-as-hpropositions principle (PhP )
which strengthens (PU), and two rules that have the form of the Axiom of Unique Choice,
one for the type of sets (AUCV ) and one for the terms of the type of sets (AUCEl(β)), both of
them follow from (AC). These three rules are valid when interpreted in homotopy type theory
and allow to validate respectively the Bounded Separation, Replacement and Exponentiation
axioms of CST .

In [3] the interpretation of CZF into ML(PU + AC) is factored further via another logic-
enriched type theory with two Collection Rules (COLL) mirroring the two Collection axioms.
Similarly, we will factor the interpretation of CST into ML(PhP + AUCV + AUCEl(β)) via
another logic-enriched type theory with Replacement and Collection rules (Rep) and (Exp)
mirroring the Replacement and Exponentiation axioms. These two rules are consequences of
the Collection Rules (COLL). Under the assumption of (PhP ) the Replacement and Expo-
nentiation Rules follow respectively from (AUCV ) and (AUCEl(β)).

The two factorisations follow the same structure very closely in the first two steps, but differ
in the third one. In the case of CST the interpretation of the two axioms of unique choice into
HoTT is not obvious and rests on the equivalence between J·K∞,1 and Gylterud’s interpretation,
which in turn uses univalence and set-quotients. In summary, we obtain the following diagram.

ML(Exp+Rep) //ML(PhP +AUCV +AUCEl(β))

**
CST

77

J·K∞,1
//HoTT

CZF

''

J·KAczel

//ML1W

ML(COLL) //ML(PU +AC)

44
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Overview

In [2] we have developed a general method for deriving natural deduction rules from the truth
table for a connective. The method applies to both constructive and classical logic. We have
shown completeness with respect to Kripke semantics and we have defined the notion of detour
conversion (or “cut”) for the constructive connectives. We have also shown that for the well-
known connectives, like ∨, ∧, →, the constructive rules we derive are equivalent to the natural
deduction rules we know from Gentzen and Prawitz. However, they have a different shape
(closer to the “general elimination rules” by Von Plato [4]), because we want all our rules to
have a standard “format”, to make it easier to define the notion of detour conversion in general.

In [3] we have analysed detour conversion in general for the constructive rules. Following
the Curry-Howard isomorphism, we have given terms to deductions and we have studied detour
conversion as term reduction. We have proven in [3] that reduction is weakly normalising for
any set of constructive rules, where we consider the union of detour conversion and permutation
conversion. In the present talk we will prove strong normalisation of the logic for any set of
constructive rules, strengthening the weak normalisation result of [3].

Background

Definition Suppose we have an n-ary connective c with a truth table tc (with 2n rows). We
write ϕ = c(p1, . . . , pn), where p1, . . . , pn are proposition letters and we write Φ = c(A1, . . . , An),
where A1, . . . , An are arbitrary propositions. Each row of tc gives rise to a constructive elimi-
nation rule or a constructive introduction rule for c in the following way.

p1 . . . pn ϕ

a1 . . . an 0
7→

` Φ . . . ` Aj (if aj = 1) . . . . . . Ai ` D (if ai = 0) . . .
el

` D

p1 . . . pn ϕ

b1 . . . bn 1
7→

. . . ` Aj (if bj = 1) . . . . . . Ai ` Φ (if bi = 0) . . .
in

` Φ

The rules are given in abbreviated form and it should be understood that all judgements can
be used with an extended hypotheses set Γ.
Example From the truth table we derive the following intuitionistic rules for ∧, 3 elimination
rules and one introduction rule:

` A ∧B A ` D B ` D
∧-ela

` D

` A ∧B A ` D ` B
∧-elb

` D

` A ∧B ` A B ` D
∧-elc

` D

` A ` B
∧-in

` A ∧B

These rules are all intuitionistically correct, as one can observe by inspection. In [2, 3] it has
been shown that these can be “optimised” and be reduced to 2 elimination rules and 1 intro-
duction rule: the well-known intuitionistic rules. It should be noted that for each connective,
the rules are completely self-contained, so we don’t need to explain one connective in terms of
another.
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Contribution

In [2, 3] we have defined the notions of detour convertibility (which we called direct cut in [2]):
an introduction rule immediately followed by an elimination rule, and the notion of permutation
convertibility, (which we called direct cut in [2]): an elimination rule followed by an elimination
rule that may block a detour convertibility. These give rise to two ways of transfoming natural
deductions: detour conversions and permutation conversions. In [3] we have proven that detour
conversion is strongly normalising, that permutation conversion is strongly normalising and that
the combination of both is weakly normalising. In the present talk we will strengthen this result
and proof strong normalisation (SN) of the combination.

We will establish the SN result in the following way: We define a translation of our logic
into a simple type theory with “parallel terms”, λ→par. (Reduction in our logic is not Church-
Rosser, so a translation simply to λ→ would not do.) The translation for formulas (types)
is in double negation style, and the translation of proof terms is in CPS style, following De
Groote [1]. The term translation is reduction preserving and we prove that λ→par is strongly
normalising, thereby obtaining the result.

Inspired by the SN proof, we describe a general logic that has a weak form of negation, for
which strong normalisation is relatively easy to prove. Any constructive logic for any set of
connectives that we have described can be translated to this general logic, in such a way that
detour conversion is preserved. The permutation conversions are preserved equationally, but
not as reductions. The logic has a weak type of negation ∼A, which we can view as A → o,
where o is a basic proposition without further logical meaning. The formulas are the ones
formed using the connectives of choice, ϕ, ψ, plus the ones of the form ∼ϕ, ∼∼ϕ and ∼∼∼ϕ.
The rules are as follows.

∼∼∼ϕ ∼∼ϕ
o

∼∼ϕ ∼ϕ
o

∼ϕ ϕ

o

[∼∼ϕ]
...
o

∼∼∼ϕ

[∼ϕ]
...
o

∼∼ϕ
For every connective we have rules specific for that connective. Here we give the ones for ∧.

∼∼P ∼∼Q
∧-in

P ∧Q

∼∼∼P
∧-el1

∼(P ∧Q)

∼∼∼Q
∧-el2

∼(P ∧Q)
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Reasoning with uncertainty has gained an important role in logic, computer science, ar-
tificial intelligence and cognitive science. These applications urge for development of formal
models which capture reasoning of probabilistic features. The general lack of compactness for
probabilistic logics causes that one of the main proof-theoretical problems in this framework is
to provide a strongly complete axiomatic system. Several infinitary logics have been introduced
to deal with that issue, a detailed overview can be found in [5, 6]. Note that the term infinitary
concerns the meta language only, i.e. the object language is countable, and formulas are finite,
while only proofs are allowed to be infinite.

We will present the results of [3] and ongoing work that emerged from [3] and [2]. In [3] we
have introduced a formal model PΛ→ for reasoning about probabilities of simply typed lambda
terms which is a combination of lambda calculus and probabilistic logic. The probabilistic logic
that we use is LPP2 logic, a detailed overview can be found in [6]. Our ideas for proving strong
completeness are based on the ideas used in [6] for LPP2 logic. The simply type assignment,
which is sound and complete ([4]) with respect to the simple semantics (based on a concept of
a term model) is used.

We have proposed ([3]) a syntax, Kripke-style semantics and an infinitary axiomatization
for PΛ→. The language of PΛ→ consists of two sets of formulas, basic formulas and probabilistic
formulas.

ForPΛ→ = ForB ∪ ForP.

Basic formulas, denoted by ForB, are all lambda statements of the form M : σ, where M is
lambda term and σ is a simple type or statements of the same form connected with Boolean
connectives.

ForB α ::= M : σ | α ∧ α | ¬α.
Basic probabilistic formulas are formulas of the form P≥sα, where α is a basic formula and
s ∈ [0, 1] ∩ Q. The set of all probabilistic formulas, denoted by ForP, is the smallest set
containing all basic probabilistic formulas which is closed under Boolean connectives.

ForP φ ::= P≥sα | φ ∧ φ | ¬φ.

In our language nested probabilistic operators and mixing of basic and probabilistic formulas
are not allowed. Hence, expressions x : σ ∨ P≥ty : σ → τ and P≥sP≥tM : τ are not well
defined formulas of the logic PΛ→. Since we did not want the language to contain higher-order
probabilistic formulas, we defined it by layering formulas into basic and probabilistic. Some
examples of well defined formulas in this language are: x : σ → τ ∧ y : σ,
x : σ → τ ∧ y : σ ⇒ xy : τ , P=1(x : σ → τ ∧ y : σ)⇒ P=1xy : τ .



A semantics of PΛ→, we have proposed, is a Kripke-style semantics based on the possible-
world approach, where each possible world is a lambda model. The crucial part in the proof
of strong completeness of PΛ→ is the fact that the simple type assignment of [4] is sound and
complete with respect to the models, which are possible worlds in this structure. Hence, a type
assignment, which is sound and complete was necessary. A probability measure is defined on the
algebra of subsets of W , where W is the set of possible worlds. We have presented an infinitary
axiomatization of PΛ→, which consists of: (1) axioms for the classical propositional logic, (2)
axioms for probabilistic logics and (3) two groups of inference rules. Rules from the first group
can be applied only to lambda statements and those rules define simple type assignment. In the
second group, we have three rules: the first one can be applied to both basic and probabilistic
formulas (modus ponens), the second one can be applied to basic formulas and the third one
can be applied only to probabilistic formulas.

The main results are the corresponding soundness and strong completeness of PΛ→. The
proof of the strong completeness, as well as construction of the canonical model, relies on two
key facts. The first one is the completeness of the simple type assignment with respect to the
simple semantics, proved in [4], and the second one is the existence of a maximal consistent
extension of a consistent set.

A framework for probabilistic reasoning about typed terms is also provided in [1]. The
authors proposed a probabilistic type theory in order to formalize computation with statements
of the form “a given type is assigned to a given situation with probability p”, so the approach is
similar to ours. However, the difference is that neither soundness nor completeness issues were
discussed. The developed theory was used for analyzing semantic learning of natural languages
in the domain of computational linguistics.

Currently, we are extending the results and the techniques developed in [3] to lambda
calculus with intersection types, as discussed in [2], exploiting the soundness and completeness
of intersection type assignment with respect to the filter lambda models. The axiomatization
in [3] includes classical propositional logic, because we wanted to reason about probabilities
in a classical way, but one of the ideas for future work is the axiomatization that includes
intuitionistic propositional logic.
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reasoning about simply typed lambda terms. In Logical Foundations of Computer Science - LFCS
2018, volume 10703 of Lecture Notes in Computer Science, pages 170–189, 2018.

[4] J. Roger Hindley. The completeness theorem for typing lambda-terms. Theoretical Computer
Science, 22:1–17, 1983.
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Summary In previous work [4, 3], we have introduced an imperative calculus equipped with a type
and effect system which infers sharing possibly introduced by the evaluation of an expression. The
calculus is pure in the sense that reduction is defined on language terms only, since they directly encode
store. The advantage of this non-standard operational model with respect to a conventional model
using a global memory is that reachability relations among references are partly encoded by scoping.
Moreover, sharing is represented as an equivalence relation among variables. We have implemented
in Coq the type and effect system and (partly) the operational semantics. We plan to complete the
implementation, as detailed below, and to mechanize the proof of soundness. We argue that the Coq
implementation nicely illustrates the advantages of our purely syntactic model, since proofs can be
carried out inductively, without requiring more complicated techniques such as, e.g., bisimulation.

Syntax and operational semantics The syntax of expressions is given by:
e ::= x | e.f | e.m(e1, . . . , en) | e.f =e ′ | new C(e1, . . . , en) | {d1 . . . dn e} expression
d ::= T x=e; declaration

We assume a Featherweight Java style class table where method bodies are expressions from this
grammar. An expression can be a variable, a field access, a method invocation, a field assignment, a
constructor invocation and a block consisting of a sequence of declarations and a body. A declaration
specifies a type, a variable and an initialization expression.
The following is an example of reduction sequence in the calculus. We emphasize at each step the
declarations which can be seen as the store (in grey) and the redex which is reduced (in a box). We
feel free to also use expressions of primitive types such as int, we omit the brackets of the outermost
block, and abbreviate {T x=e; e ′} by e;e ′ when x does not occur free in e ′.

D z=new D(0); C x=new C(z,z); C y=x; D w=new D(y.f1.f+1); x.f2=w; x −→
D z=new D(0); C x=new C(z,z); D w=new D( x.f1 .f+1); x.f2=w; x −→
D z=new D(0); C x=new C(z,z); D w=new D( z.f +1); x.f2=w; x −→
D z=new D(0); C x=new C(z,z); D w=new D( 0+1 ); x.f2=w; x −→
D z=new D(0); C x=new C(z,z); D w=new D(1); x.f2=w ; x −→
D z=new D(0); C x=new C(z,w); D w=new D(1); x

The main idea is to use local variable declarations to directly represent the store. That is, a declared
variable is not replaced by its value, as in standard let, but the association is kept and used when
necessary.
Assuming a program (class table) where class C has two fields f1 and f2 of type D, and class D has an
integer field f, in the initial term the first two declarations can be seen as a store which associates to
z an object of class D whose field contains 0, and to x an object of class C whose two fields contain (a
reference to) the previous object. The first reduction step eliminates an alias, by replacing occurrences
of y by x. The next three reduction steps compute x.f1.f+1, by performing two field accesses and one
sum. The last step performs a field assignment. The final result of the evaluation is an object of class
C whose fields contain two objects of class D, whose field contains 0 and 1, respectively.
Since our calculus smoothly integrates memory representation with shadowing and α-conversion, read-
ing (or, symmetrically, updating) a field could cause scope extrusion. To avoid this problem, such
reduction steps are only allowed modulo a congruence relation ∼= , which captures structural equiva-
lence, as in π-calculus [6]. To ensure that, in such a congruence, declarations are moved from a block
to the directly enclosing block only when this is safe, blocks are annotated, during typechecking, with
local variables which will be connected to the result of the block.
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Type system Given an expression e, the type system computes a sharing relation S which is an
equivalence relation on a set containing e’s free variables and an additional distinguished variable
res denoting the result of e. The fact that two variables, say x and y , are in the same equivalence
class in S, means that the evaluation of e can possibly introduce sharing between x and y , that is,
connect their reachable object graphs, so that a modification of (a subobject of) x could affect y as
well, or conversely. For instance, let eb be the expression x.f =y;z.f , the sharing effects computed
by the type system are two equivalence classes: {x , y} and {res, z}. The typing judgment has
shape Γ ` e : T | S ; e ′ where Γ is an assignment of types to variables, S is a sharing relation on
dom(Γ) ∪ {res} and e ′ is an annotated expression, where blocks are annotated by the local variables
which will be (possibly) connected with the result of the body. For instance, if class C has a field
of class D , we have that x : C , z : C , y : D ` eb : D | {x , y}{res, z} ; eb. Moreover, let d
be C x=new C(new D()); C z=new C(new D()); D y=new D(); we have that ` {d eb} : D | ε ;

{{z}d eb} where ε is the identity equivalence relation (in this case empty since there are no free
variables).
This type and effect system which infers sharing effects is very expressive, notably it detects uniqueness
of references in much more situations than others based on recovery [5, 1].

Related work Several mechanized proofs of soundness in Coq have been presented in the literature,
even for sophisticated type systems. However, we are not aware of such proofs for type systems
ensuring uniqueness in a highly expressive way. Notably, the soundness of the language presented in
[5] is done by embedding the types denotation into a sound program logic [2] and not formalizing the
language directly.

Towards a mechanized proof We have implemented in Coq the type and effect system and the re-
duction rules. This required the formalization of sharing relations, which are built on top of equivalence
relations on finite sets. We explored different ways to formalize the latter, converging on a definition as
an inductive family, properties of which we hope to prove concisely using Coq’s new dependent pattern
matching capabilities [7]. The current code can be found at //github.com/paola-giannini/sharing.
To complete the implementation of the operational semantics, we need an oriented version of the con-
gruence relation on terms to be applied before reduction steps, analogously to α-conversion. Then,
we plan to mechanize the full proof of soundness. We argue that the Coq implementation nicely
illustrates the advantages of our purely syntactic model, since proofs can be carried out inductively,
without requiring more complicated techniques such as, e.g., bisimulation. To support this claim we
plan to compare our formalization with the one of [5].

References

[1] Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy McNeil. Deny capabilities for safe, fast
actors. In Elisa Gonzalez Boix, Philipp Haller, Alessandro Ricci, and Carlos Varela, editors, International
Workshop on Programming Based on Actors, Agents, and Decentralized Control, AGERE! 2015, pages
1–12. ACM Press, 2015.

[2] Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew J. Parkinson, and Hongseok Yang.
Views: compositional reasoning for concurrent programs. In Roberto Giacobazzi and Radhia Cousot,
editors, The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’13, Rome, Italy - January 23 - 25, 2013, pages 287–300. ACM, 2013.

[3] Paola Giannini, Marco Servetto, and Elena Zucca. Tracing sharing in an imperative pure calculus: extended
abstract. In FTfJP’17 - Formal Techniques for Java-like Programs, pages 6:1–6:6. ACM Press, 2017.

[4] Paola Giannini, Marco Servetto, and Elena Zucca. A type and effect system for sharing. In Ahmed Seffah,
Birgit Penzenstadler, Carina Alves, and Xin Peng, editors, OOPS’17 - Object-Oriented Programming
Languages and Systems, Track at SAC’17 - ACM Symp. on Applied Computing, pages 1513–1515. ACM
Press, 2017.

[5] Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Bromfield, and Joe Duffy. Uniqueness and
reference immutability for safe parallelism. In Gary T. Leavens and Matthew B. Dwyer, editors, ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages and Applications (OOPSLA
2012), pages 21–40. ACM Press, 2012.

[6] Robin Milner. Communicating and mobile systems - the Pi-calculus. Cambridge University Press, 1999.

[7] Matthieu Sozeau and Cyprien Mangin. Equations - a function definition plugin. https://github.com/

mattam82/Coq-Equations.

2

jes
Caixa de texto



Syntactic investigations into cubical type theory
Hugo Herbelin

INRIA - IRIF - University Paris Diderot

Abstract
This is a proposal for a talk exploring syntactic variations of cubical type theory, with

the following motivations in mind:

• providing a syntax of cubical type theory close to the syntax of (some semi-strict variant
of) an ω-groupoid,

• seeing equivalence as the definition of equality on types, hence with univalence satis-
fied by construction, as already explored e.g. by Altenkirch and Kaposi [AK18], or
Polonsky [Pol15].

Additionally, we shall develop a set of notations to reason about (hyper)cubes in arbitrary
dimensions, roughly in the continuation of Licata and Brunerie [LB15, Bru16], using nesting
of the heterogeneous formulation of equality characterized by abstraction over an interval.

In traditional Martin-Löf’s type theory, the tower of iteration of the identity type over a type
has a structure of globular set which extends to a structure of weak ω-groupoid [LeF08, vG08],
or actually even of a semi-strict ω-groupoid since one of the laws of neutrality of reflexivity holds
definitionally.

If one moves to cubical type theory [CCHM16, ABC+17], the same can be said with the
difference that the structure of equality given by dependent1 abstraction and application over
a formal interval is the one of a (Cartesian) symmetric cubical set (without connections nor
inverses at this stage).

In the first part of the talk, we shall define a couple of notations for reasoning about (hy-
per)cubes in all dimensions, emphasizing that the laws of a (Cartesian) symmetric cubical sets
hold definitionally in cubical type theory (see also [vL18] for an exploration of the properties of
equality seen as dependent product from an interval).

In the second part of the talk, we shall consider a variant of cubical type theory with con-
nections and inverses but also with ordinary composition rather than “Kan composition” along a
tube of faces. Having composition, connections and inverses primitive makes the syntax of type
theory explicitly closer to the one of cubical ω-categories and cubical ω-groupoids, but with a
semi-strict choice of rules (note: our motivation is pragmatical and we have no claim that this
particular choice of semi-strictness is adequate for synthetic homotopy).

Our interval has no structure, besides supporting variables of interval. The rules for equality
shall be the following ones:

Γ ` ε : A =θ B Γ ` t : A Γ ` u : B

Γ ` t =ε u : U

Γ, i ` t : A

Γ ` λi.t : t[0/i] =λi.A t[1/i]

Γ ` v : t =ε u i ∈ Γ

Γ ` v i : εi

where, as an experiment, we take substitution of an interval variable by its endpoints as an
effective (i.e. meta-level) operation.

The typing rules for composition, inverse and connections are the following:

Γ ` p : t =ε u Γ ` q : u =ζ v

Γ ` q ◦ p : t =ζ◦ε v

Γ ` p : t =ε u

Γ ` p−1 : u =ε−1 t

1as in [CCHM16, Section 9] or [ABC+17]
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Γ ` ε : t =θ u

Γ ` pε : ε =ε =̃pθ û û

Γ ` ε : t =θ u

Γ ` εy : t̂ =t̂ =̃θy ε ε

where t =̃ε u abbreviates λi.(t i =εi ui) and t̂ abbreviates λi.t for i not occurring in t (i.e. reflex-
ivity).

Up to now, the framework only gives a structure to equality. It remains to define equality
for each type constructor. For the universe, equality is taken to be equivalence:

Γ ` A : U Γ ` B : U
Γ, a : A ` f(a) : B Γ, b : B ` g(b) : A
Γ, a : A ` p(a) : a =

Â
g(f(a)) Γ, b : A ` q(b) : f(g(b)) =

B̂
b

Γ ` {f(a); g(b); p(a); q(b)}a:A,b:B : A =
Û
B

with the equivalence internally turned into an adjoint one. We can then show that equivalences
can be equipped with the structure given by composition, connections, inverses and abstraction
over a formal interval, so that the generic properties of equality apply. We then get type coercions
for free (and thus transport) as the projections of a proof of equality of types.

We shall incidentally give a proof of the following dependent form of functional extensionality
by allowing term variables to be instantiated by interval variables:

Γ, i ` A : U Γ, i, a : A ` B : U
Γ ` f : Πa :A[0/i]. B[0/i] Γ ` g : Πa :A[1/i]. B[1/i]
p : Πa0 :A[0/i].Πa1 :A[1/i].Πe :a0 =λi.A a1. f a0 =λi.B[ei/a] g a1

Γ ` fundepext(p) : f =λi.Πa:A.B g
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The well-known Curry-Howard isomorphism relates functions with proofs and can be con-
sidered as one of the conceptional bases of Martin-Löf’s type theory (MLTT).

For our considerations, the crucial correspondence is the one between (intuitionistic) proofs
of an implication A → B and functions of the type A → B. To make sense out of this
correspondence, the functions need to be, of course, total, i.e., for every element of A the
function needs to associate an element of B.

Although totality of functions is a desirable property, it does not match with computational
reality. It is not only the case that non-terminating computations appear natural. Even more
importantly, there is no Turing complete computable model of computation in which all func-
tions are total, therefore there is no Turing complete programming language based on total
functions.

Partial functions are easily integrated in type-free contexts, and we may address shortly
some interesting historical considerations regarding functional self-application, cf. [Kah07, Ap-
pendix]. The main aim of this talk is, however, to illustrate the role of partial functions in the
formalization of the extended predicative Mahlo universe (EPM), [KS10].

A weakly Mahlo cardinal is a regular cardinal κ such that for every function f : κ→ κ there
exists a regular cardinal π < κ s.t. f : π → π [Rat90]. This definition has been translated into
MLTT [Set00] and Feferman’s theory of Explicit Mathematics (EM) [JS01]. In EM, a Mahlo
universe is a universe M such that for every a ∈ M and f : M → M there exists a subuniverse
m(a, f) of M, which is an element of M, contains a, and is closed under f .

This axiomatization, which we call axiomatic Mahlo (AxM), is clearly highly impredicative,
since, if viewed as an introduction rule, the definition of M requires to add m(a, f) for all total
f : M→ M, where the set of total f is only known after M is complete.

In the EPM, formulated in EM, the totality of f : M → M is no longer required. Instead
one requires f only to be total on the subset m(a, f) of M, and not on elements added after
the addition of m(a, f) to M – the reason for adding m(a, f) is not destroyed by the addition
of m(a, f) or any element added after m(a, f). More precisely one tries to build subsets m(a, f)
closed under f and a. If that succeeds m(a, f) is added to M. M is constructed from below,
because the reason for adding m(a, f) depends only on m(a, f) and not on all of M.

It turns out that the permission of partial functions is crucial for the axiomatization of the
EPM, and because of this, we have not been able to port it to MLTT yet. Due to the use of
partial functions one can define in EPM an elimination rule for M, which makes M a least Mahlo
universe. This implies that M contains only elements introduced by its introduction rules. In
AxM such an elimination rule results in a contradiction (see [Pal98] for a proof in the context
of MLTT).

The reason for calling the resulting theory extended predicative is that it goes beyond the
proof theoretic definition of predicativity (i.e., theories with the proof-theoretic strength of Γ0).
It goes as well beyond its use in MLTT, where it seems to be limited to types defined by function
types and inductive and inductive-recursive definitions [Dyb00, DS03]. In this sense the EPM
goes beyond what is undoubtedly considered as predicative in MLTT.1

1One should note that many type theoretists consider the Mahlo universe in MLTT, which goes beyond
inductive and inductive-recursive definitions, as predicative as well.
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This result suggests, on the proof-theoretic side, that the formulation of a least Mahlo
universe, and as well of a Mahlo universe which is without any doubts accepted as predicative
in nature, may exceed the limit of MLTT (or at least require a paradigm shift in MLTT). On
the more conceptional side, it challenges the restriction to total functions in the Curry-Howard
correspondence, although the question, what the meaning of a “partial implication” could be,
remains a desideratum (see also [Kah1x]).
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Closure conversion is an early translation step in the compilation of functional languages,
which converts functions with potential free variable occurrences to pairs consisting of environ-
ments and closed functions. Minamide et al. [2] described type-preserving closure conversion
for a polymorphic language. They considered an intensional or type-passing implementation of
polymorphism, which enables different memory layouts for differently typed runtime objects,
and necessitates that runtime type representations are passed to polymorphic functions. In
contrast, type-erasing polymorphism (as in [3]) removes types during compilation, mandating
uniform runtime representations (although with potential layout-changing optimizations, such
as unboxing).

Generalizing type-passing polymorphism to dependent type theories would allow precise
specification of memory layout using dependent types. For example, Σ-types may represent
two values next to each other in memory, where the size and layout of the second field depends
on the value of the first field. Hence, runtime objects would be described by type-theoretic
universes instead of simple statically known layout schemes. Also, a closure-converted type
theory with precise control over memory layout could be useful as an intermediate language
even if types are erased somewhere on the way to machine code.

The current work is a first step in this direction. I describe a dependent type theory with a
predicative universe hierarchy, Σ-types, Π-types with closed inhabitants and primitive closure
objects. Also, types and runtime type codes are distinguished by Tarski-style universes, and
type codes are themselves closure converted. Consistency for this theory is proved with a
standard type-theoretic model. Then, it is proved that the general function space with term
formation in non-empty contexts is admissible in this theory. General functions are represented
as closures and term formation corresponds to closure building. The expected β and η rules
also hold for this function space. Then, a closure conversion translation into this theory is
presented, from a source theory with predicative universes and dependent functions. Injectivity,
preservation of typing and preservation of conversion are proven for the translation.

Closures and type codes in the target theory

The target theory has predicative universes Ui with decoding El, Σ-types, closed function types
(denoted (a : A)→ B) and closure types Cl (a : A)B. Closed functions differ from usual functions
only in the term formation rule: λ-abstraction is only valid in the empty context (denoted ·).
For closures, there are rules for type and term formation, elimination, and η and β conversion,
presented in this order:

Γ ` A typei Γ, a : A ` B typej

Γ ` Cl (a : A)B typemax(i, j)

· ` E : Ui Γ ` env : ElE · ` t : (ea : Σ(e : ElE).A)→ B

Γ ` packE env t : Cl (a : A[e 7→ env]) (B[ea 7→ (env, a)])

∗This work was supported by the European Union, co-financed by the European Social Fund (EFOP-3.6.3-
VEKOP-16-2017-00002).



Γ ` t : Cl (a : A)B Γ ` u : A

Γ ` t u : B[a 7→ u]

Γ ` t : Cl (a : A)B Γ ` u : Cl (a : A)B Γ, a : A ` t a ≡ u a
Γ ` t ≡ u

(packE env t)u ≡ t (env, u)

The type code inhabitants of Ui may also contain closures. This is required for efficient runtime
computation of type dependencies in a potential type-passing implementation. Decoding with
El computes types from codes by applying closures as needed. Rules for Cl codes are listed
below; cases for other types are analogous.

Γ ` A : Ui Γ ` B : Cl (ElA) (Uj)

Γ ` Cl′AB : Umax(i, j) El (Cl′AB) ≡ Cl (a : ElA) (El (B a))

We use an abstract closure representation, in contrast to [2], where closures are derived from
existential and translucent types. This is because of the need to capture environments at
arbitrary universe levels, which precludes Σ representations.

Unknown to the author at the time of submission, Ahmed and Bowman [1] developed closure
conversion for the Calculus of Constructions, and used a similar closure representation for the
same reasons, with analogous β and η rules. The main difference to the current work is that
they don’t consider closure conversion for type codes, only for terms. There are also a number of
technical differences, for instance, the current work uses a predicative hierarchy instead of two
universes with an impredicative base universe, and does not consider deterministic reduction,
only a non-directed conversion relation.

Admissibility of general function space

The main goal is to build a term of Cl (a : A)B from some Γ, a : A ` t : B, in a way such that β,
η and substitution rules hold. Closure building is defined mutually with quoting operations on
well-formed contexts and types:

• From each Γ, we construct a closed code quote Γ for the corresponding iterated Σ-type,
along with an isomorphism between Γ and the singleton context containing El (quote Γ),
consisting of two back-and-forth substitutions.

• From each Γ ` A typei, we construct Γ ` quoteA : Ui, such that El retracts quote, and quote

is natural with respect to type substitution. Quoting to type codes here involves building
closures which compute type dependencies, as we have seen for the Cl example.

• Closures are built by pack-ing together quote-ed environment types, environments (given
from Γ → El (quote Γ) substitutions) and closed function bodies (given by closing the t

input function bodies using the El (quote Γ)→ Γ substitutions).
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On the Role of Semisimplicial Types
Nicolai Kraus
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Abstract

Constructing semisimplicial types is a well-known open problem in homotopy type theory.
I explain why I believe that this problem is highly important. This talk proposal is based
on several papers that are already available as well as on work in progress.

What are semisimplicial types? Let us write U for a universe in MLTT/HoTT. A semisim-
plicial type restricted to level 2 is a tuple (A0, A1, A2) of the following types, where uncurrying
is done implicitly: A0 : U

A1 : A0 → A0 → U
A2 : (x, y, z : A0)→ A1(x, y)→ A1(y, z)→ A1(x, z)→ U

(1)

We can interpret A0 as a type of points, A1 as a type of (directed) lines between two given
points, and A3 as a type of “triangle fillers”. On the next level, we would add a type family A3

indexed over four points, six lines, and four triangle fillers forming a tetrahedron, and so on.1

Can we define semisimplicial types in HoTT? It is unknown whether there is a type
family F : N→ U1 such that F (n) encodes the type of tuples (A0, . . . , An) in any suitable way
in “book HoTT” (the type theory developed in [14]). This is a major open problem in homotopy
type theory, known as the problem of defining semisimplicial types.

The problem has been considered so significant that other type theories which allow solutions
have been suggested. The first is Voevodsky’s homotopy type system (HTS) which enables us to
reason about strict equality. The two-level type theories (2LTTs) as presented by Altenkirch,
Annenkov, Capriotti and myself [1, 4] are variants of HTS which offer some choices. A form of
2LTT has been used by Boulier and Tabareau to define a model structure on the universe [5].
Another alternative to HTS is the logic-enriched type theory by Part and Lou [12]. As far as I
know, a definition of semisimplicial types is also possible in the computational higher type theory
of Angiuli, Favonia, Harper, and Wilson (see [3] and related papers).
Why is this problem interesting? Since (homotopy) type theory is a “theory based on
∞-groupoids”, it is natural to attempt the development of a theory of higher categories, but
it is open how to even define the notion of an (∞, 1)-category in “book HoTT”. In a setting
with semisimplicial types, Capriotti and I have suggested and studied complete semi-Segal types
which so far work well [6]. Related is the work by Sattler and myself: we can define types
of diagrams over many different index categories, and we can show that these definitions are
well-behaved [11].

A further important question is whether homotopy type theory can serve as its own meta-
theory, which one would expect from a foundation of mathematics. If this is the case, then
semisimplicial types can be constructed [13]. I have hope that the opposite direction can be
shown as well; this would require a version of Altenkirch and Kaposi’s “type theory in type
theory” [2] without set-truncation.

1Remark: This is an approach to encode type-valued presheaves over the category ∆+ (the category of finite
nonzero ordinals and strictly increasing functions) without having to talk about functor laws; it is inspired by
the Reedy model structure for functor categories.
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Do semisimplicial types also matter for synthetic homotopy theory? In the very
impressive existing work in synthetic homotopy theory (e.g. the results of the HoTT book [14]),
it has not been necessary to consider infinite coherence structures explicitly because clever
encodings of the relevant data have been used to avoid such higher structures. One example for
this is the the notion of a half-adjoint equivalence, where one gives only one out of two equations
on level 2; the slightly less clever way would be to use both equations on level 2, then two
coherence equations on level 3, and so on, already generation an infinite (but in this case less
complicated) tower. It is not clear that such encodings are possible in all situations that might
turn up in HoTT. One example that I would like to discuss in the talk is the open problem
whether the suspension of a set is always 1-truncated [14, Exercise 8.2]. A similar question which
I have posted on the HoTT mailing list [9] asks whether “adding a path” to a 1-type (or higher)
preserves its truncation level. I conjecture that both can be answered positively if semisimplicial
types are available in the type theory (see [10] for a partial result); one way to see a connection
is applying the encode-decode method [14, Chp 2.12] which in the case of these problems seems
to require expressing coherence towers. One of the arguments I am using to attack the problem
is a special case of another of my results that depend on semisimplicial types, namely the fact
that functions ‖A‖−1 → B correspond to coherently constant functions A→ B [7, 8].
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The problem: types and weak ω-groupoids, internally One of the discoveries un-
derlying the recent homotopical interpretation of Martin-Löf type theory is the fact that,
for any type, the tower of its iterated Martin-Löf identity types gives rise to a weak ω-
groupoid [LL10, vdBG11]. Some motivation has recently been put forward [ALR14, HT15]
for performing this construction internally. However, first investigations have stumbled upon
the following tension: (1) on the one hand, in order to semantically agree with the standard
notion, ω-groupoids should be based on sets, i.e., ‘discrete’ types; (2) on the other hand, con-
structing the weak ω-groupoid associated to any non-discrete type appears to require basing
them on general types.

The latter constraint is clear, but let us give a bit more detail about the former. As previous
authors, we adopt Brunerie’s definition of weak ω-groupoids [Bru16], which seems most directly
amenable to internalization. Roughly, a weak ω-groupoid is a model (in types) of a specific,
very simple type theory. In the most basic version of this theory, contexts correspond to finite
globular sets, types to pairs of parallel cells, and terms to cells. Thus, for example, the globular
set below left is modeled by the context below right

x y
f

g
α x : ?, y : ?, f : x =? y, g : x =? y, α : f =x=?y g ` .

Example types in it are f =x=?y g and α =f=x=?yg α; and an example term of the former
type is α itself. In this basic version, models of the theory are merely globular types. The
idea is then to enrich the type theory with term formers corresponding to composition, identi-
ties, associativity, and the whole standard package of higher coherences. This is done by first
identifying a class of contractible contexts which correspond to pasting schemes. E.g., pasting
schemes for binary composition and identities for 1-cells are given by

x : ?, y : ?, f : x =? y, z : ?, g : y =? z ` and x : ? `.

Such contexts may be defined inductively, which yields a different judgement Γ `c . The
crucial rule then (roughly) says that any type A in any contractible context Γ in inhabited by
a term cohΓ,A, called a coherence, which amounts to saying that the corresponding pasting
scheme admits a composite. E.g., composition is the coherence obtained for the context above
left, with A = (x =? z), and identity corresponds to the one above right with A = (x =? x).

Now the difficulty evoked in item (1) above arises in the definition of models of this type
theory, which is polluted with coherence conditions. Typically, a näıve approach could start by
defining a model to consist of a type JΓK for each context Γ, plus for each Γ ` A a family JAKΓ

indexed by the elements of JΓK, and for each term Γ `M : A a section of this family. But for any
Γ ` B, there is another family JAKΓ,B , and we certainly want any model to satisfy the condition
that the latter is precisely given by (γ, b) 7→ JAKΓ(γ), for any γ ∈ JΓK and b ∈ JBKΓ(γ). Such
constraints are hard to specify without any redundancy. They thus generate higher constraints,
and so on, which quickly becomes intractable.

A possible solution [ALR14] consists in taking models in sets, i.e., types with discrete
homotopy type, which considerably improves the situation but gives up item (2).



Types are weak omega-groupoids, in Coq T. Hirschowitz, A. Lafont and N. Tabareau

Two-level type theory We here avoid this dilemma, by working in a 2-level type theory
[ACK16], i.e., a type theory with two notions of equality, one strict and one homotopical. We
formalize the construction in a simple 2-level extension of Coq [Laf]. The point is to use strict
equality to axiomatize weak ω-groupoids: the constraints evoked above are required to hold
strictly, which has the same taming effect as taking models in sets, while still accomodating
models in general types. Homotopical equality may then be used to construct the weak ω-
groupoid associated to a so-called fibrant type. This idea turned out to work, but only up to
the following issues, which are arguably of lesser conceptual importance.

First, the construction of the weak ω-groupoid associated to a type is rejected by Coq’s
well-foundedness criterion. We thus consider a variant of Brunerie’s type theory which only
considers contractible contexts, and accordingly terms and types therein. This is enough for
Coq to swallow the pill, but of course we should adapt our notion of model to compensate for
the missing contexts. However, non-contractible contexts never yield new coherences, hence
only have to do with globular structure, not weak ω-groupoid structure. We may thus define
weak ω-groupoids as models of our restricted type theory in globular types, so that globular
structure is built into them from the start.

A second issue is related to defining type theories internally. In [ALR14], the authors
formalize Brunerie’s type theory as an intrinsic syntax, i.e., as an inductive-inductive-recursive
datatype following the typing rules directly, although they have to switch off Agda’s termination
checker. However, Coq does not support such definitions, so we follow the old school route:
we define untyped syntax first and then typing judgements, and use the Uniqueness of Identity
Proofs principle satisfied by strict equality to simulate the non-dependent inductive-inductive-
recursive eliminator required to construct the weak ω-groupoid associated to a type.

Weak ω-categories Finally, slightly restricting contractible contexts and the coherence rule,
we also formalize weak ω-categories of [FM17]. We leave the following consistency check for
future work: does any Finster-Mimram ω-category with weakly invertible cells yield a Brunerie
ω-groupoid?
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Abstract
We describe a generic method to implement and

extract partial recursive algorithms in Coq in a
purely constructive way, using L. Paulson’s if-
then-else normalization as a running example.

Implementing complicated recursive schemes
in a Type Theory such as Coq is a challenging
task. A landmark result is the Bove&Capretta
approach [BC05] based on accessibility predi-
cates, and in case of nested recursion, simulta-
neous Inductive-Recursive (IR) definitions of the
domain/function [Dyb00]. Limitations to this ap-
proach are discussed in e.g. [Set06, BKS16]. We
claim that the use of (1) IR, which is still absent
from Coq, and (2) an informative predicate (of sort
Set or Type) for the domain, preventing its erasing
at extraction time, can be circumvented through a
suitable bar inductive predicate.
type Ω = α | ω of Ω∗Ω∗Ω
let rec nm e = match e with
| α ⇒ α
| ω(α,y,z) ⇒ ω(α,nm y,nm z)
| ω(ω(a,b,c),y,z)⇒ nm(ω(a,nm(ω(b,y,z)),nm(ω(c,y,z))))

Figure 1: L. Paulson’s if-then-else normalisation algorithm.

We illustrate our technique on L. Paulson’s al-
gorithm for if-then-else normalization [Gie97,
BC05] displayed in Fig. 1. For concise state-
ments, we use ω to denote the ternary construc-
tor for if then else expressions, and α as
the nullary constructor for atoms. As witnessed in
the third match rule ω(ω(a,b,c),y,z), nm contains
(two) nested recursive calls, making its termination
depend on properties of its semantics. This cir-
cularity complicates the approach of well-founded
recursion and may even render it unfeasible.

Our method allows to show these properties af-
ter the (partial) function nm is defined, as proposed
in [Kra10], but without the use of Hilbert’s ε-
operator. We proceed purely constructively with-
out any extension to the existing Coq system and

the recursive definition of Fig. 1 can be extracted
as is from the Coq term that implements nm.

We start with the inductive definition of the
graph G : Ω→Ω→ Prop of nm (Fig. 2) and we
show its functionality.1 Then we define the do-
main/termination predicate D : Ω→Prop as a bar
inductive predicate with the three rules of Fig. 3.

G α α

G y ny G z nz

G (ω α y z) (ω α ny nz)

G (ω b y z) nb G (ω c y z) nc G (ω a nb nc) na

G (ω (ω a b c) y z) na

Figure 2: Rules for the graph G : Ω→Ω→Prop of nm.

D α

D y D z

D (ω α y z)

D (ω b y z) D (ω c y z)
∀nb nc,G (ω b y z) nb→G (ω c y z) nc→D (ω a nb nc)

D (ω (ω a b c) y z)
Figure 3: Rules for the bar inductive definition of D : Ω→Prop.

There, we single out recursive calls using G but
proceed by pattern-matching on e following the re-
cursive scheme of nm of Fig. 1. Then we define
nm_rec : ∀e (De : D e), {n | G e n} as a fixpoint
using De to ensure termination. However, the term
nm_rec e De does not use De to compute: the value
n satisfying G e n is computed by pattern-matching
on e and recursion, following the scheme of Fig. 1.

Finally, we define nm e De := π1(nm_rec e De)
and get nm_spec e De : G e (nm e De) using the
second projection π2. Extraction of OCaml code
from nm outputs exactly the algorithm of Fig. 1, il-
lustrating the purely logical (Prop) nature of De.
In order to reason on D/nm we show that they sat-
isfy the IR specification given in Fig. 4: the con-
structors of D are sufficient to establish the simu-
lated constructors d_nm_[012], while nm_spec al-
lows us to derive the fixpoint equations of nm. Us-

1i.e. g_nm_fun : ∀e n1 n2,G e n1→G e n2→n1 = n2.
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ing g_nm_fun, we get proof-irrelevance of nm.2

Inductive Ω : Set := α : Ω | ω : Ω→Ω→Ω→Ω.
Inductive D : Ω→Prop :=
| d_nm_0 : D α
| d_nm_1 y z : D y→D z→D(ω α y z)
| d_nm_2 a b c y z Db Dc : D

(
ω a (nm (ω b y z) Db)

(nm (ω c y z) Dc)
)

→ D
(
ω (ω a b c) y z

)

with Fixpoint nm e (De : D e) : Ω := match De with

| d_nm_0 7→ α
| d_nm_1 y z Dy Dz 7→ ω α (nm y Dy) (nm z Dz)
| d_nm_2 a b c y z Db Dc Da 7→ nm

(
ω a (nm (ω b y z) Db)
(nm (ω c y z) Dc)

)
Da

end.

Figure 4: IR spec. of D : Ω→Prop and nm : ∀e, D e→Ω.

We show a dependent induction principle for
D (see Fig. 5). The term d_nm_rect states that
any dependent property P : ∀e, D e→ Type con-
tains D as soon as it is closed under the simulated
constructors d_nm_[012] of D. The assumption
∀e D1 D2, P e D1→ P e D2 restricts the princi-
ple to proof-irrelevant properties about the depen-
dent pair (e,De). This is exactly what we need
to establish properties of nm. Then we can show
partial correctness and termination as in [Gie97] –
in this example, nm happens to always terminate
on a normal form of its input. In a more rela-
tional approach, these properties can alternatively
be proved using nm_spec and induction on G x nx.
Theorem d_nm_rect (P : ∀e, D e→Type) :(

∀eD1 D2, P e D1→P e D2
)
→

(
P _ d_nm_0

)

→
(
∀y z Dy Dz, P _ D1→P _ Dz→P _ (d_nm_1 y z Dy Dz)

)

→
(
∀a b c y z Db Dc Da, P _ Db→P _ Dc→P _ Da . . .

. . . →P _ (d_nm_2 a b c y z Db Dc Da)
)

→ ∀e De, P e De.

Figure 5: Dependent induction principle for D : Ω→Prop.

Though our approach is inspired by IR defini-
tions, in contrast with previous work, e.g. [Bov09],
the corresponding principles are established in-
dependently of any consideration on the seman-
tics or termination of the target function (nm), i.e.
without proving any properties of D/nm a priori.
This postpones the study of termination after both
D and nm are defined together with constructors
and elimination scheme, fixpoint equations and
proof-irrelevance. Moreover, our domain/termina-
tion predicate D is non-informative, i.e. it does not
carry any computational content. Thus the code
obtained by extraction is exactly as intended.

2i.e. nm_pirr : ∀e D1 D2, nm e D1 = nm e D2.

Our Coq code is available under a Free Software
license [LWM18]. We have successfully imple-
mented other algorithms using the same technique:
F91, unification, depth first search as in [Kra10],
quicksort, iterations until 0, partial list map as
in [BKS16], Huet&Hullot’s list reversal [Gie97],
etc. The method is not constrained by nested/mu-
tual induction, partiality or dependent types. On
the other hand, spotting recursive sub-calls implies
the explicit knowledge of all the algorithms that
make such calls, a limitation that typically applies
to higher order recursive schemes such as e.g. sub-
stitutions under binders. Besides growing our bes-
tiary of examples, we aim at formally defining a
class of schemes for which our method is applica-
ble, and more practically propose some automation
like what is done in Equations [Soz10].
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Characterization of eight intersection
typed systems à la Church∗
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This talk is a contribution to the study of the intersection type connective for Church-style
λ-calculi. Intersection types are a way to express naturally ad hoc polymorphism for pure λ-
terms: they also characterize the set of strongly normalizing terms. The difficulty to retain
intersection in a Church-style calculus, as type decorations get in the way, is well-known (see
[BDS13], page 781, for a quite extensive list of papers on this topic). In our line of work, we
encode the type assignment rules of a Curry-style λ-calculus into a Church-style calculus, in
a similar way that the Curry-Howard correspondence encode derivation rules of a logic into
a Church-style calculus. In particular, we encode intersections as “strong pairs” in the sense
of Pottinger and Lopez-Escobar [Pot80, LE85], and also sharing some similarities with virtual
tuples of [WDMT02]. The problem is to find an encoding we could consider to be isomorphic
such that we get unicity of typing and decidability of type reconstruction.
Starting from the intersection type theories of Coppo-Dezani (CD), Coppo-Dezani-Sallé (CDS),
Coppo-Dezani-Venneri (CDV), and Barendregt-Coppo-Dezani (BCD), we define a family of
intersection typed systems ∆T

R for “∆-calculi” à la Church, parametrized by three things: a
binary relation R on pure λ-terms (which is either ≡ or =β), whether the universal type U is
a valid type (if this is the case, we note U ∈ A), and an intersection type theory T , whose rules
and schemes are the usual ones below:

Minimal rules
(refl) σ 6 σ (incl) σ ∩ τ 6 σ, σ ∩ τ 6 τ

(glb) ρ 6 σ, ρ 6 τ ⇒ ρ 6 σ ∩ τ (trans) σ 6 τ, τ 6 ρ ⇒ σ 6 ρ

Axiom schemes
(Utop) σ 6 U (U→) U 6 σ → U

(→∩) (σ → τ) ∩ (σ → ρ) 6 σ → (τ ∩ ρ)
Rule scheme
(→) σ2 6 σ1, τ1 6 τ2 ⇒ σ1 → τ1 6 σ2 → τ2

Subtyping rules and schemes always verify the minimal rules, and of course the rules (Utop)
and (U→) do not make sense if U is not a valid type.
Then, we classify the ∆-calculi and we discuss some properties between these ∆-calculi and
the original intersection type assignment systems λT

∩ , the most important being the property of
isomorphism, which states that whenever we assign a type σ to a pure λ-term M , the same type
can be assigned to a ∆-term such that the “essence” (defined below) of ∆ is M , and conversely,
if ∆ has type σ, so has the pure λ-term obtained by ∆ by applying a suitable essence function.
These properties have been thoroughly studied in our technical report [LS18], as well as in our
previous works [LR05, LR07, DdLS16].

∗Work supported by the COST Action CA15123 EUTYPES “The European research network on types for
programming and verification”.
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The essence function o − o, which relates a ∆-term to a pure λ-term, is defined as follows:
ox o , x o ∆σ o , o ∆ o ou∆ o , o ∆ o

oλx:σ.∆ o , λx.o ∆ o o ∆1 ∆2 o , o ∆1 o o ∆2 o
o 〈∆1 ,∆2〉 o , o ∆1 o o pri ∆ o , o ∆ o i ∈ {1, 2}

and the main typing rules are:
B `TR ∆1 : σ B `TR ∆2 : τ o∆1 o R o∆2 o

B `TR 〈∆1 ,∆2〉 : σ ∩ τ
(∩I) U ∈ A

B `TR u∆ : U
(top)

B `TR ∆ : σ σ 6T τ
B `TR ∆τ : τ

(6)

where u∆ is a special constant inhabiting U and ∆τ indicates that ∆ is coerced to type τ , and
〈∆1 ,∆2〉 indicates an intersection.

Eight type systems for the ∆-calculus can be classified in a ∆-cube where, intuitively, arrows
represent system inclusion.

∆CD
≡

∆CD
=β

∆CDV
≡

∆CDV
=β

∆CDS
≡

∆CDS
=β

∆BCD
≡

∆BCD
=βThe base system is ∆CD

≡ , its subtyping relation is the minimal
one, U is not a valid type, and the comparison relation on essences
is ≡. We obtain ∆CDS

≡ from ∆CD
≡ by adding the U type and

the (Utop) subtyping rule. ∆CDV
≡ does not have the U type, but

its subtyping relation is extended with the rule (→∩) and the
rule scheme (→). ∆BCD

≡ has both the U type and the extended
subtyping relation, which satisfy all the previous rules, including
(U→). ∆CD

=β
(respectively ∆CDS

=β
,∆CDV

=β
, ∆BCD

=β
) is the same system

as the one below in the cube where the comparison relation is
now =β .

All of these intersection typed systems have unicity of type, and all of them except for ∆CDS
=β

and ∆BCD
=β

have decidability of type reconstruction and type checking.
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Formal Semantics in Modern Type Theories
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I’ll give an overview, and report some recent developments, of Formal Semantics in Modern
Type Theories (MTT-semantics for short) [25, 14, 4]. MTT-semantics is a semantic framework
for natural language, in the tradition of Montague’s semantics [21]. However, while Montague’s
semantics is based on Church’s simple type theory [5, 8] (and its models in set theory), MTT-
semantics is based on dependent type theories, which we call modern type theories (MTTs),1

to distinguish them from the simple type theory. Thanks to the recent development, MTT-
semantics has become not only a full-blown alternative to Montague’s semantics, but also a
very attractive framework with a promising future for linguistic semantics.

In this talk, MTT-semantics will be explicated, and its advantages explained, by focussing
on the following:

1. The rich structures in MTTs, together with subtyping, make MTTs a nice and powerful
framework for formal semantics of natural language.

2. MTT-semantics is both model-theoretic and proof-theoretic and hence very attractive,
both theoretically and practically.

By explaining the first point, we’ll introduce MTT-semantics and, at the same time, show that
the use and development of subtyping [13, 17] play a crucial role in making MTT-semantics
viable. The second point, based on [15, 16, 11, 4], shows that MTTs provide a unique and
nice semantic framework that was not available before for linguistic semantics. Being model-
theoretic, MTT-semantics provides a wide coverage of various linguistic features and, being
proof-theoretic, its foundational languages have proof-theoretic meaning theory based on infer-
ential uses2 (appealing philosophically and theoretically) and it establishes a solid foundation
for practical reasoning in natural languages on proof assistants such as Coq [3] (appealing
practically). Altogether, this strengthens the argument that MTT-semantics is a promising
framework for formal semantics, both theoretically and practically.
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The clocks they are adjunctions
Denotational semantics for Clocked Type Theory

Bassel Mannaa and Rasmus Ejlers Møgelberg

IT University of Copenhagen (basm,mogel@itu.dk)

Clocked Type Theory (CloTT)[1] is a new type theory for guarded recursion with multiple
clocks. This means in particular that there is a family of modal type constructors .κ indexed
by clock variables κ, to be thought of as delays in the sense that .κA classifies data of type
A delayed one time step on clock κ. The combination of this with a fixed point operator
dfixκ : (.κA → A) → .κA, guarded recursive types and universal quantification over clocks
allows one to program with coinductive types encoding productivity in types using .κ. Indeed,
CloTT has a strongly normalising, confluent reduction semantics satisfying a canonicity result,
which proves that for any closed stream definable in CloTT, the nth element can be computed in
finite time. Another important application area for CloTT is as a metalanguage for constructing
models and operational reasoning principles for advanced programming languages. This talk
describes the first denotational model of CloTT [?].

Clocked Type theory

The main new contribution of Clocked Type Theory over previous type theories for guarded
recursion is the notion of ticks. These are evidence that time has passed, and are used to
reason about guarded recursive and coinductive data. In particular, they encode the delayed
substitutions of [4] and thereby provide computation rules for these. In CloTT the time step
modality .κ is generalised to a form of dependent function type with the introduction and
elimination form given by the rules

Γ, α : κ `∆ t : A κ ∈ ∆

Γ `∆ λ(α : κ).t : . (α : κ).A

Γ `∆ t : . (α : κ).A Γ, β : κ,Γ′ `∆

Γ, β : κ,Γ′ `∆ t [β] : A [β/α]

Writing .κA for . (α : κ).A when α does not appear free in A, this generalises the modal
operator mentioned above. In these rules ∆ is a special context for clock variables, and the
restriction on the context of t in the elimination rule prevents the same tick from being used to
eliminate multiple .κ in the same term as in t [β] [β], which is not well typed, and should not
be, because otherwise dfixκ(λx.(x [β] [β])) would inhabit every type of the form .κA.

Ticks are used in CloTT for reasoning about guarded recursive and coinductive types, but
are also used to unfold fixed points. In particular, the term dfixκt [�] unfolds to t(dfixκt). Here
� is the tick constant with the unusual typing rule

Γ `∆,κ t : . (α : κ).A Γ `∆ κ′ ∈ ∆

Γ `∆ (t [κ′/κ]) [�] : A[κ′/κ] [�/α]

The two substitutions of clock variables in the conclusion prevent typing of terms like λx.x [�]
which would render the type theory unsound, while maintaining closure of typing under sub-
stitutions. The names of ticks control which fixed points are unfolded by the rule mentioned
above, and thus play a crucial role in the proof of strong normalisation.
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The model

The model is based on a model [5] of the related Guarded Dependent Type Theory [4], but
extends it to ticks. The model is done in the category of covariant presheaves on the category
whose objects are pairs (Θ, ϑ) of a finite set (of semantic clocks) Θ and a map ϑ : Θ → N
(associating to each clock the time left on the clock), Morphisms τ : (Θ, ϑ) → (Θ′, ϑ′) in this
category are maps τ : Θ → Θ′ such that ϑ′ ◦ τ ≤ ϑ in the pointwise order. Morphisms allow
time to tick, but also clocks to be synchronised (if τ(κ) = τ(κ′)) or introduced (if κ ∈ Θ′ \τ [Θ]).
There is a presheaf of clocks Clk(Θ, ϑ) = Θ, and contexts, types and terms in clock context
∆ are modelled in the category GR[∆] of presheaves over the category of elements of Clk∆.
Explicitly, this category of elements has as objects triples (Θ, ϑ, f) where f : ∆→ Θ.

There appears to be no object of ticks on a clock κ in this model, and thus context extension
with ticks Γ, α : κ `∆ cannot be modelled using standard tools. On the other hand, there is a
natural model Iκ for the modal type operator .κ without ticks as an endofunctor on GR[∆].
This functor has a left adjoint Jκ. We model context extension as JΓ, α : κ `∆K =Jκ JΓ `∆K.
The functor Iκ extends from contexts to types and terms in the sense that to each semantic
context Γ (i.e. object in the presheaf category), and to each semantic type A dependent on
Γ there is a semantic type Iκ A dependent on Iκ Γ. We can use this to interpret the type
formation rule

Γ, α : κ `∆ A type κ ∈ ∆

Γ `∆ . (α : κ).A type

by substituting Iκ JAK dependent on IκJ JΓK along the unit of the adjunction. This is an
example of a dependent right adjoint type [2]. Likewise, modelling � is made complicated by
the fact that there is no object of ticks. Nevertheless, it can be modelled using a substitution
of appropriate type.

In the singly clocked case (CloTT restricted to the clock context ∆ = {κ}), the left adjoint
has a particularly simple description. This fragment can be modelled in the topos of trees [3],
modelling a closed type as a family of sets (Xn)n∈N and maps (rn : Xn+1 → Xn)n∈N. The delay
modality is modelled as (I X)n+1 = Xn, (I X)0 = 1 and the left adjoint is (J X)n = Xn+1.
The multiclock setting generalises this idea, but is harder to describe.
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There are a handful of reasons to pay attention to various flavors of dependently typed translations
for dependently typed calculi. For instance, they may allow to ensure the preservation of safeness
properties (obtained via dependent types) through a compilation process. Or, as defended by Boulier et
al. [3], such translations can allow us to define syntactical models for type theories extended with new
reasoning principles. In particular, a reasonable plan of attack to allow effectful programs in Coq could
be to build successive layers extending CIC with side effects and to justify their soundness by means
of syntactic translations. This path has been undertaken recently by Pédrot and Tabareau in [7, 8] to
add various classes of effects to CIC. In that perspective, continuation-passing style translations give
a semantics to control operators, that is to say classical logic, by expliciting the flow of control. Even
though it is well-known that classical logic and dependent types can only be mixed if their interactions
are restricted, it might still be of great interest to allow more classical reasoning in proof assistants by
means of control operators.

In 2002 [2], Barthe and Uustalu first stated the impossibility of CPS translating dependent types. As
observed in Bowman et al. [4], this result is due to the standard definition of typed CPS translation by
double negation. They indeed manage to circumvent this point by using parametric answer-types in the
translation at the price of an ad-hoc application constructor and of considering an extensional type theory
as target language. During this talk, we intend to present a more general method that we introduced to
CPS translate a call-by-value sequent calculus with dependent types [5]. Our construction relies on the
use of delimited continuations in the source language, leading to more parametric answer-types in the
translation. The latter turn out to be enough to soundly type the CPS without further addition. We shall
now briefly outline the rationale guiding our use of delimited continuations with that respect [5].

It is folklore that sequent calculi are in essence close to the operational semantics of abstract ma-
chines, which makes them particularly suitable to define CPS translations. We take advantage of their
fine-grained reduction rules to observe the problem already in the source language that we defined as a
call-by-value dependently typed calculus. Having a look at the β-reduction rule gives us an insight of
what happens. Informally, consider a dependent function λa.p : Πa : A.B (i.e. p is of type B[a]) that is
executed in front of a stack q · e : Πa : A.B (i.e. e is of type B[q]). A call-by-value head-reduction rule
(in a λµµ̃-like fashion) for this command would then produce a command that we cannot type:

〈λa.p||q · e〉 〈q||µ̃a.〈p||e〉〉
Πq

Γ ` q : A | ∆

Γ, a : A ` p :���B[a] | ∆ Γ, a : A | e :���B[q] ` ∆

〈p||e〉 : Γ, a : A ` ∆
Mismatch

Γ | µ̃a.〈p||e〉 : A ` ∆
(µ̃)

〈q||µ̃a.〈p||e〉〉 : Γ ` ∆
(Cut)

The intuition is that in the full command, a has been linked to q at a previous level of the typing
judgment. However, the command is still computationally safe, in the sense that the head-reduction
imposes that the command 〈p||e〉 will not be executed before the substitution of a by q is performed. By
then, the problem would be solved. This phenomenon can be seen as a desynchronization of the typing
process with respect to computation.

1

jes
Caixa de texto



How to define dependently typed CPS using delimited continuations Étienne Miquey

Interestingly, the very same happens when trying to define a CPS translation carrying type depen-
dencies. Indeed, a translation of the command above is very likely to look like:

~q� ~µ̃a.〈p||e〉� = ~q� (λa.(~p� ~e�)),

where ~p� is intuitively of type ¬¬B[a] and ~e� of type ¬B[q], hence the sub-term ~p� ~e� is ill-typed.
We follow the idea that the correctness should be guaranteed by a head-reduction strategy, preventing

〈p||e〉 from reducing before the substitution of a was made. We would like to ensure the same property
in the target language, namely that ~p� cannot be applied to ~e� before ~q� has furnished a value to
substitute for a. Assuming that q eventually produces a value V , we are informally looking for the
following translation and the corresponding reduction sequence:

~q� ~µ̃a.〈p||e〉� ?
= (~q�(λa.~p�))~e�→ ((λa.~p�) ~V�) ~e�→ ~p�[~V�/a] ~e�

Since ~p�[~V�/a] has a type convertible to ¬¬B[q], the last term is now well-typed.
The first observation is that the term (~q�(λa.~p�))~e� could be typed by turning the type A → ⊥

of the continuation that ~q� is waiting for into a (dependent) type Πa : A.R[a] parameterized by R.
This way we could have ~q� : ∀R.(Πa : A.R[a] → R[q]) instead of ~q� : ((A → ⊥) → ⊥). For
R[a] := (B(a) → ⊥) → ⊥, the whole term is well-typed. Readers familiar with realizability will also
note that such a term is realizable, since it eventually terminates on a correct term ~p[q/a]� ~e�.

The second observation is that such a term suggests the use of delimited continuations [1] to tem-
porarily encapsulate the evaluation of q when reducing such a command. Indeed, the use of delimited
continuations allows the source calculus to mimic the aforedescribed reduction:

〈λa.p||q · e〉  〈µt̂p.〈q||µ̃a.〈p||t̂p〉〉||e〉  〈µt̂p.〈V ||µ̃a.〈p||t̂p〉〉||e〉  〈µt̂p.〈p[V/a]||t̂p〉||e〉  〈p[V/a]||e〉

Incidentally, this allows us to introduce a list of dependencies within the typing derivations of judgments
involving delimited continuations, and to fully absorb the potential inconsistency in the type of t̂p.

Finally, we shall explain how the translation of dependent sums dually requires co-delimited con-
tinuations, how the use of delimited continuations also unveils the need for a restriction to safely use
control operators, and how we plan to reuse this method to define a sequent calculus presentation of CIC
or even an extension of Munch-Maccagnoni’s polarised system L [6] to dependent types.
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A type theory for directed homotopy theory

Paige North ∗
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Summary. We present rules for a type theory with intended semantics in both higher cate-
gories and directed homotopy theory.

Background: directed type theory. Martin-Löf type theory, together with its identity
type, is often described as a synthetic theory of ∞-groupoids. Such a description naturally
leads one to wonder whether there might be a similar synthetic theory of ∞-categories. Much
work has already been done in this direction. In [LH11], the authors construct a type theory
that gives a theory of 1-categories. In [RS17], the authors construct a type theory that gives a
theory of (∞, 1)-categories. Other works-in-progress ([Nyu15],[War13]) do hope to give a theory
of ∞-categories, but are unwieldy for our purpose: namely, to describe a theory not only of
higher categories, but also directed homotopy theory.

Background: directed homotopy theory. In brief, directed homotopy theory ([Gra09]) is
the study of spaces for which certain paths are singled out and given a direction. For example,
one might want to consider the circle S1 in the category of topological spaces together with
the information that the clockwise path shown below is ‘allowed’, but the analogous counter-
clockwise path is not ‘allowed’.

Such directed spaces appear in many applications, but perhaps most notably in the study
of concurrent processes [Faj+16]. Here, a system of concurrent processes is represented by a
space whose points represent states of the system and whose directed paths represent possible
executions of the system. One can then use a suitable variant of homotopy theory to understand
the essential similarities or differences between two such processes.

Directed homotopy theory and higher category theory are very similar. One might describe
both of them as the study of objects which have points, undirected paths, and directed paths.
The most salient difference between the two, from a categorical perspective, is that while the
undirected paths of a higher category are included in its directed paths (since every isomorphism
is a morphism), the directed paths of a directed space are included in its undirected paths. And
thus, the intersection of directed homotopy theory and higher category theory can be understood
to be traditional homotopy theory.

A directed type theory. We propose a new type theory with intended semantics in both
directed homotopy theory and higher category theory.

We give rules for a homomorphism type that are analogous to those given by Martin-Löf
for the identity type. The notion of direction is thus given as a type, not as a judgment, which
distinguishes this type theory from that of [LH11] and [Nyu15].

∗Partially supported by AFOSR grant FA9550-16-1-0212.



There are two sorts of morphisms in this type theory: those that preserve identities and
those that preserve homomorphisms. Thus there are also two sorts of dependent types: those for
which one can perform path induction along elements of the identity type and those for which
one can perform path induction along elements of the homomorphism type. This is similar to
the type theory of [LH11] and [Nyu15]; but differs from that of [War13] (in particular, it does
seem to be possible to perform directed path induction in the system of [War13]).

There is currently an interpretation of this type theory in the category of small categories.
In the near future, we hope to complete this research project by providing interpretations in
categories of higher categories and categories of directed spaces.

We hope that, in the more distant future, this directed type theory will lay the groundwork
for the formalization and automated checking of the mathematics of higher category theory and
directed homotopy theory.
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Integers as a Higher Inductive Type
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We show that the set-truncation condition on the type of integers as a quotient inductive
type (QIT)1, can be reduced to a weaker coherence condition in such a way that it is still a
set. This has the advantage that the integers can now be eliminated into not only sets but also
more general higher types with this coherence condition.

The integers can easily be implemented as an ordinary inductive type by regarding it as a
coproduct of natural numbers. However, in practice, this causes unnecessary complication to
the proofs as there are many cases to handle. For example, to define an addition operator, one
need to do case analysis on both of left and right integers, each of them has two constructors
(as a coproduct), which, in turn as other two constructors (as a natural number), therefore, we
will have 8 cases in total. A similar problem applies to a multiplication operator, this results in
a complicated proof of something that should be relatively easy such as the distributively law.
The problem will be even worse if this version of integers is used to define rational numbers.

Alternatively, the integers are the free group generated over the unit type, so it can be
implemented as a QIT as follows2:

data Ztr : Set where

zero : Ztr

succ : Ztr → Ztr

pred : Ztr → Ztr

sp : (x : Ztr ) → succ (pred x) ≡ x

ps : (x : Ztr ) → pred (succ x) ≡ x

isSet : (x y : Ztr ) → (p q : x ≡ y) → p ≡ q

isSet is the set-truncation condition i.e. a condition that forces all paths between two elements
of Ztr to become equal. This condition is necessary. Otherwise, Ztr would not be a set e.g.
both sp (succ zero) and3 ap succ (ps zero) have type succ (pred (succ zero)) ≡ succ zero
but they are not equal to one another. This is a problem (Basold et al. (2017)) because only a
set can have a decidable equality due to Hedberg’s Theorem (Univalent Foundations Program,
2013, Section 7.2). Therefore, Ztr without isSet is not the integers we want since it doesn’t have
the canonicity property, which, in turn, would imply decidable equality.

On the another hand, if a type is set-truncated explicitly then it can only be eliminated
into sets. In our case, Ztr cannot be eliminated into S1 (Univalent Foundations Program, 2013,
Section 6.4) although Ztr is the fundamental group of it. To fix this, we replace isSet with the
following weaker coherence condition:

∗Supported by EPSRC grant EP/M016951/1 and USAF grant FA9550-16-1-0029.
1Quotient inductive types are higher inductive type that all of higher path become trivial. See Li (2014),

Altenkirch and Kaposi (2016), and Altenkirch et al. (2018)
2We use agda-like syntax to present our code.
3ap : ∀{`}{A B : Set `} → (f : A → B) → x ≡ y → f x ≡ fy
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coh : (x : Z) → sp (succ x) ≡ ap succ (ps x)

and we call these new integers Z. A higher constructor coh looks familiar to the counter-example
of Ztr above (when isSet is removed) nevertheless it is strong enough to imply that Z is indeed
a set. To prove this, let Znf be a type of integers defined as a coproduct of natural numbers,
we define functions nf : Z → Znf and emb : Znf → Z and prove that emb ◦ nf is equal to
the identity function. This proof implies that Z has a decidable equality, hence, it is a set due
to Hedberg’s Theorem.

We can understand Z by observing that all the pred, sp, ps, and coh just express that succ
is an equivalence in the sense of half-adjoint-equivalence in (Univalent Foundations Program,
2013, Chapter 4). Other alternatives would be to use bi-invertibility (having two predecessors)
or contractible-fibres (stating that each fibre of succ is contractible).

For the formalisation, we use cubical agda, an extension of agda inspired by cubical type
theory (Cohen et al. (2016)). The reason for using this extension is to remove some unnecessary
postulates and to avoid irreducible terms.

We hope the idea to replace set truncation by coherence conditions can be applied to many
QITs, in particular, the intrinsic syntax of type theory Altenkirch and Kaposi (2016) which also
uses set-truncation and hence we are unable to eliminate into a univalent universe. However,
this case will be much harder because we would have to represent the coherence conditions for
higher type theory explicitly.
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Higher-order abstract syntax (HOAS) [10] offers a direct representation of higher-order
languages, where capture-avoiding substitution is function application, substitution lemmas hold
by definition and all derived constructions respect substitution. However, embedding HOAS
directly into type theory (and thus profiting from its perks) is difficult, since HOAS relies on an
intensional host language function space, while type theoretic function spaces are extensional [6].
We thus propose an indirect approach via embeddings.

An embedding of a HOAS signature into type theory is a term model of the signature. A
model gives an interpretation of terms, well-behaved substitutions, and (substitution respecting)
recursive definitions on terms. Previous approaches have focused on term representations and
renaming - essentially modelling weak HOAS [4, 11, 3].

For full models, we extend Hofmann’s presheaf semantics for a second-order signature [6],
to a construction for arbitrary HOAS signatures (Figure 1). A model consists of a category of
contexts D whose morphisms are substitutions and presheaves for every term sort. The action of
a substitution on a term gives the notion of instantiation s[σ].

The main obstacle to constructing a term model as an inductive type are negative occurrences
(tm in lam). Hofmann’s insight is that this problem disappears when Tm is representable,
i.e., Tm = Hom( , T ) and D has finite products. In this case, the natural transformation
Lam : TmTm → Tm can equivalently be given by a natural transformation with components
LamX : Tm(T ×X)→ Tm(X). For every signature, we have to construct a category D.

As a first step, we create the corresponding weak HOAS signature (Figure 1 (b)), in which all
non-strictly positive occurrences of a sort (tm) are replaced by a new type v of variables together
with a variable constructor (var). We build a presheaf model for a weak HOAS signature by
constructing a category C with enough distinct non-terminal objects to represent each sort of
variables. In the case of the lambda calculus, any cartesian category with a non-terminal object
T will work and we define V = Hom( , T ). The canonical choice for C is the free cartesian
category on one object. We model the term sorts by the corresponding inductive types.

We have previously considered presheaf models for weak HOAS signatures [8]. In the present
context, the results of [8] show that this construction gives a model for a weak HOAS signature
and moreover that such models always extend to models of the corresponding HOAS signature.
For terms, this shows that Tm : Ĉ is a monad relative to V . The construction then extends Tm

tm : ∗ Tm : D̂
app : tm→ tm→ tm App : Tm2 → Tm

lam : (tm→ tm)→ tm Lam : TmTm → Tm

(a) HOAS

tm, v : ∗ Tm,V : Ĉ
var : v→ tm Var : V→ Tm

app : tm→ tm→ tm App : Tm2 → Tm

lam : (v→ tm)→ tm Lam : TmV → Tm

(b) Weak HOAS

Figure 1: (Weak-) HOAS signatures and presheaf models for the lambda calculus.
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to a (representable) presheaf over the Kleisli category of Tm (our chosen D). Additionaly, we
obtain a recursion principle with respect to other models of the signature.

The construction of [8] applies to simply typed second-order signatures. We extend this
construction to essentially arbitrary HOAS signatures. In the general case, the reduction to
a weak HOAS signature can be recursive, the construction has to be stratified in the case of
several sorts of terms, and the final relative monad contains more than a single sort of terms.
This construction yields several interesting cases, when we consider certain concrete HOAS
signatures.

• Well-typed Terms. For well-typed terms, the resulting contexts contain a type for each
variable. In this case, our construction yields the relative monad of well-typed terms
described in [2].

• Stratified and Mutual Inductive Types. Applying the construction to signatures
with several sorts with binders, such as the types and terms of System F, yields vector
parallel substitutions [7, 8]. The category of contexts is the finite product of the respective
contexts for all occuring subsorts. In the case of System F we find that the product of the
presheaf of types and terms together form a relative monad on the category of contexts.

• Third-order signatures. While most practical work has focused on second-order signa-
tures, some applications require higher-order signatures. Consider the λµ-calculus [9, 1],
which extends the lambda calculus with an additional constructor.

µ : ((tm→ cont)→ cont)→ tm

Our construction yields a weak version with additional variable sort w and variable
constructor var : w → tm → cont. The final result of our translation corresponds to
Parigot’s original first-order definition of λµ-terms [9], with a novel notion of instantiation
which generalizes the structural substitution of λµ.

• Type Systems. Since presheaves can model dependent types we can extend our con-
struction to HOAS predicates, i.e., type systems. The result of the translation is a form of
relational typing as in [8], with general “hypothetical” judgments in the context.

Our translation comes with a suitable notion of substitution on the type system, e.g.:

Γ ` s : A ∀(t : B) ∈ Γ. ∆ ` t[σ] : B

∆ ` s[σ] : A

This corresponds to the notion of context morphism lemmas – which in [5] are defined
as “parallel substitutions with additonal typing and well-formedness information”. Our
approach pins down exactly what additional information is necessary and identifies context
morphism lemmas as the correct notion of substitution on typing judgments.

• Induction Principles. Applying the translation to the trivial predicate on terms which
states that a term is built from constructors yields a useful induction principle for terms.
For the lambda calculus, the induction principle states that given a substitutive predicate
P : tm → Prop for which P s → P t → P (app s t) and (∀tσ. P t → P s[t · σ]) → P (lam s)
we have P s[σ] for all terms s and substitutions σ which satisfy P (σ i) for all i.

Future Work. Ultimately, we are not interested in an arbitrary presheaf model, but in a
“free” model. What this should mean is currently an open question. On the practical side we are
currently implementing our construction as part of a tool to embed HOAS signatures into Coq.
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The Minimalist Foundation is a two-level foundation for constructive mathematics [MS05].
Its intensional level is given by a dependent type theory in the style of Martin-Löf Type Theory,
the Minimal Type Theory (mTT) [Mai09]. One peculiarity of its definitional equality is that it
rules out the so-called ξ rule, and in general it restricts computation under binders by replacing
all compatibility rules with a primitive substitution rule, shown below for the simply-typed
case:

Γ, x : A ` t = s : B

Γ ` λx.t = λx.s : A→ B
(ξ)

Γ, x : A ` t : B Γ ` a = b : A

Γ ` t[a/x] = t[b/x] : B
(sub)

We observe that the resulting equality corresponds to Çağman and Hindley’s notion of weak
reduction [cH98], which we refer to as CH-weak reduction. In this setting, despite the absence
of the ξ rule, some form of reduction under binders is still admitted through sub. The rule,
however, does not suggest in any obvious way an algorithmic method to reduce terms.

Our long-term goal is to find a constructive normalization proof for mTT. A classical proof is
easily found—mTT is normalizing under full β-reduction, that subsumes CH-weak reduction—
but it is not sufficient for our purposes, and from it we cannot extract a provably correct
normalization algorithm. So far we have shown, and formalized in Agda a proof of normalization
for a version of System T with λ-abstractions and CH-weak equality judgments, i.e. with the
sub rule in place of all compatibility rules, that we call System Twk. We think that the technique
used for it can be extended to mTT and dependent types in general.1 To our knowledge, this is
the first analysis of a normalization procedure for a typed λ-calculus under CH-weak reduction.
Previous works on similar calculi rejecting the ξ rule focus on weaker notions, like weak head
reduction [CD97], whose results do not seem to apply to our case.

Recall the definition of CH-weak reduction [cH98]: a redex R inside a term P is considered
weak if and only if no variables that appear free in R are bound in P . A CH-weak contraction
is one that affects a weak redex. Under this definition, the term λx.(λy.x)z is, for example, a
normal form, whereas λx.(λy.y)z can be reduced to λx.z.

The main difficulty with CH-weak evaluation arises from its relative nature: whether a
redex R is weak depends on what is considered to be its “enclosing” term P . This aspect seems
to suggest the necessity to laboriously index every construction involved in the normalization
proof with some contextual information regarding P . However, we observe that to recognize a
subterm as a weak redex it suffices to be able to distinguish, among its free variables, between
those that are free everywhere, and those that are bound somewhere in the enclosing term P ,
regardless of what P actually is. We call the latter locally free variables. A term can thus be
CH-weakly reduced by “tagging” its variables accordingly, and contracting only those redexes
that are closed w.r.t. locally free variables.

The tagged syntax supports a structurally recursive normalization function on untyped
terms, as well as an inductive definition of CH-weak normal forms, with no indexing overhead.
The original formal system, however, has no way to express the variable distinction, and the

1All results are to be included in the author’s forthcoming Master’s Thesis, under the supervision of M.E.
Maietti.
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lack of compatibility rules is at odds with our normalization function, that instead follows the
inductive structure of terms. To overcome these issues we employ a type-assignment approach,
and extract from the tagged syntax a second calculus (System T dwk) in which the mechanisms
of CH-weak reduction are made explicit in the type system. As a result, normalization is easily
shown, by instantiating untyped Normalization by Evaluation [Abe13] with the just-mentioned
normalization function as interpretation in a syntactic model of CH-weak normal forms.

System T dwk is a calculus with double contexts of the form Γ;∆, keeping track respectively
of free variables and locally free variables. CH-weak conversion can now be expressed explicitly
by reformulating all computation rules so that they only apply to redexes that are provably
closed w.r.t. locally free, i.e. previously abstracted variables (as in β below.) We can then
characterize an equality of the form Γ; ∆ ` t = s : A intuitively as one where all contracted
redexes are weak, i.e. do not contain free variables in ∆.

Γ;x : A ` t : B Γ; · ` s : A

Γ; ∆ ` (λx.t)s = t[s/x] : B
(β)

Γ; ∆, x : A ` t = s : B

Γ; ∆ ` λx.t = λx.s : A→ B
(ξ)

The expressive double contexts enable a definition of CH-weak equality judgments in terms
of immediate subterms, while avoiding the contraction of non-weak redexes: when proving
an equation for a subterm under a binder, it is sufficient to add the bound variable to the
second context, hence ruling it out of any redex that will be contracted within the derivation,
by construction. We therefore recover all compatibility rules, including a controlled form of ξ
rule (shown above), that is of crucial help in establishing soundness of NbE by induction on
derivations. In addition, we get admissible substitution rules for both kinds of variables.

We finally show that the “implicit” calculus can be seen as an abstraction over the “explicit”
one. In particular, we show that Γ ` t = s : A is derivable in Twk iff Γ; · ` t = s : A is derivable
in T dwk. Having proved NbE for T dwk, we get normalization for System Twk as a corollary.

Conclusion This work tests a general method to prove normalization with CH-weak equality
judgments, and represents a step towards a solution for mTT. The double-context reformulation
described above scales to dependent types: we have formalized in Agda a proof of NbE for an
“explicit”, double-context version of Martin-Löf Type Theory with Π and U. Establishing the
correspondence with the “implicit” formulation is left for future work. Besides that, weak forms
of reduction have an important role in the study of programming language dynamics, where
evaluation is normally limited to programs (i.e., closed terms.) We think that also this area
could benefit from a better understanding of CH-weak reduction.
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Abstract

We show how the so called musical notation in Agda for codata types can be considered
as syntactic sugar for using codata types in a coalgebraic setting. This allows to simulate
codata types using coalgebras while avoiding subject reduction and undecidability problems
of codata types. This restricted form of codata types can be added to the coalgebraic setting
allowing to shorten proofs and programs involving codata types.

The idea of a codata type is that it is like an algebraic data type (as introduced by the keyword
data in Agda/Haskell), but one allows infinite, or more generally non-wellfounded, applications
of constructors. An example is the type of colists which in Agda style would be defined as

codata coList : Set where
cons : N→ coList→ coList
nil : coList

and which contains finite lists as well as infinite lists such as the list of numbers greater than
n, defined as enum n := cons n (cons (n+ 1) (cons (n+ 2) · · · )).
The problems are that when implementing it first in Coq and Agda a subject reduction problem
occurred. In our coauthored article [4] we showed that the implicit assumption when pattern
matching on codata types, namely that every element of a codata type is introduced by a
constructor, results in an undecidable equality.
In order to repair this, in our coauthored article [1] coalgebras and copatterns were proposed
for replacing codata types, giving a cleaner theory. They have since been implemented in Agda,
In that approach coalgebraic types are defined by their observations. An example is the set of
streams which in our desired notation (Agda uses record types instead) would be defined as:

coalg Stream : Set where
head : Stream→ N
tail : Stream→ Stream

We can define colists using coalgebras as follows:

data coList : Set where
cons : N→∞coList→ coList
nil : coList

coalg ∞coList : Set where
[ : ∞coList→ coList

The type of colists is called ∞coList which has observation [, which determines for a colist
whether it is of the form nil or (cons n s). coList is the type of colist shapes having these
elements. Danielsson [5] pointed out that a key example for codata types is the map function,
which can get in variants of codata types quite long definitions. In coalgebras it can be defined
as follows:

map : (N→ N)→ coList→ coList
map f (cons n l) = cons (f n) (]map f ([ l)))
map f nil = nil

]map : (N→ N)→ coList→∞coList
[ (]map f l) = map f l

In Agda there exists a (currently no longer maintained) variant of codata types, using the so
called “Musical Notation” [2], which is a termination checked version of [3]. There one has a
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type former ∞ : Set → Set, which defines a generic coalgebra ∞ A from A, and an operation
] : A→∞ A, lifting elements from A to ∞ A. It can be considered as being defined as follows:

coalg (∞ A) : Set where
[ : ∞ A→ A

] : A→∞ A
[ (] a) = a

Then colists and the map function are defined as

data coList : Set where
cons : N→∞ coList→ coList
nil : coList

map : (N→ N)→ coList→ coList
map f (cons n l) = cons (f n) (] (map f ([ l)))
map f nil = nil

The problem is that the definition of map is, if followed to the letter, non normalising. Fur-
thermore it is not clear, what the right notion of equality is for elements ] (map f l) and
] (map f ′ l′). In addition, ∞ A cannot defined generically in advance, it needs to be a coalge-
bra defined simultaneously with A. These problems can be clarified, by understanding them as
definitions using coalgebras, and introducing the following notations:
• When introducing a new constant A : (~x : ~A) → Set we define automatically a new

constant∞A of the same type, and when introducing a new function f : (~y : ~B)→ A ~t we
define a constant ]f : (~y : ~B) → ∞A ~t with definitions (which are simultaneously defined
with the definitions of A and f):

coalg ∞A (~x : ~A) : Set where
[ : ∞A ~x→ A ~x

]f : (~y : ~B)→∞A ~t
[ (]f ~y) = f ~y

• If A, f are constants, then ∞ (A ~t) denotes ∞A ~t and ] (f ~t) denotes ]f ~t.
With this the above musical definition of coList andmap is the same as the previously introduced
direct simulation of coList using coalgebras, and the musical notation can be considered as
syntactic sugar for simulating codata types in coalgebras. It could live alongside the coalgebraic
version, shortening proofs and programs involving codata types.
We will discuss in our talk how to modify this definition to accommodate sized types. One should
note that Agda seems to treat mutual coinductive-inductive definitions as νX.µY definitions
without giving the option of defining them as µY.νX. Experiments show that this seems to be
the case both for the coalgebraic version and the version with musical notation.
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It is well known that lambda terms may be seen as derived combinators [1]. In this way
they may be used to create any program from more elementary building blocks of code. Using
them together with automorphisms and isomorphisms (represented by invertible lambda terms)
permits to hide (and thus protect) the way how the main program is built from these elementary
blocks; if necessary, even the specification may be hidden.

Consider some type S. The closed terms F : S represent combinators that may take other
terms as arguments. A possible meaning is that F combines in some way (and we are interested
in the case when it is opaque to external users) the operators and data. All the parameters
may be fed externally in a controlled way. Let f1÷n abbreviate f1, ..., fn.

• If we take F ≡ λf1÷n : X → Xλx : X.(fσ(1)(...(fσ(n)x)...) where σ is some permutation
of {1, ..., n}, and apply to some φ1÷n, F will combine them in any desired order. The
φ1÷n themselves may be, for example, coding functions, as in [5].

• If we take F ≡ λf1÷n : X → Xλx : X.fix then only one of φ will be selected, etc. �

• If we take Φ ≡ λG : S.G : S → S, then we may first apply Φ to some operator, like F
considered above, and then “feed” φ′s (and x in the end).

• The term λG : S.G belongs to λ1βη. In λ2βη we may add a second-order λ and consider
Θ ≡ λX.λG : S.G. In this way the type X also becomes one of controlled parameters, for
example it may be Nat, Bool or any other type.

• If dependent types are admitted, the type X itself may depend on terms as parameters.

What may be the role of isomorphisms and automorphisms1 in a security-oriented picture?
We shall describe two possible applications.

Firstly, the type S of the combinator F may have many automorphisms which form a
subset of all possible isomorphisms to/from this type. Automorphisms, in difference from
isomorphisms, do not change the types of parameters (taken in a fixed order) that F can be
applied to. So, if an automorphism θ of S is applied to F , the application θ(F ) to t1÷n is valid iff
the application Ft1÷n is valid. In difference from automorphisms, an action of an isomorphism
θ′ (which is not an automorphism) may make invalid the application θ′(F )t1÷n. This fact may
be exploited to detect code transformations performed by third-parties or to execute zero-
knowledge proof protocols if the distinctions between some type variables remain hidden
from external observers.

Secondly, Soloviev [11] had shown that any finite group may be represented as the group of
automorphisms of some type in the second order system λ2βη of [3] and in Z. Luo’s typed logical

1There exists an extensive literature on isomorphisms of types, see for exemple [3]. Linear isomorphism of
types was considered in [9]. Isomorphism in λ1βηπ∗ extended with coproduct (disjunction) was considered in [4].
About isomorphism in dependent type systems, see for example [2, 10]. Automorphisms of types (first studied
in [11]) are just isomorphisms of some type to itself, for example the permutations of premises in A→ A→ B.
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framework LF with dependent products (and in the extensions of these systems). The groups of
automorphisms of simple types (the system λ1βη) correspond to the groups of automorphisms
of finite trees. This permits to combine the use of λ-terms as combinators and the methods of
data protection and cryptography based on group theory.

For illustrative purposes, let us recall the description of the ElGamal cryptosystem (cf. [7,
8]). In our case the protocol may use the iterations of a distinguished automorphism g : A→ A,
where gm is g ◦ ... ◦ g (m times).

Private Key: m,m ∈ N .
Public Key: g and gm.
Encryption. To send a message a : A (in our approach it is not a plain text, but an

element of type A, and may have more complex structure) Bob computes gr and gmr for a
random r ∈ N . The ciphertext is (gr, gmra).

Decryption. Alice knows m, so if she receives the ciphertext (gr, gmra), she computes gmr

from gr, then (gmr)−1, and then computes a from gmra.
We do not consider here the cryptosystems like MOR based on a more sophisticated group

theory [8] but we note that they, too, can be represented in type theory using the results of [11].
By encoding a finite cyclic group of prime order as a group of automorphism of some

type we can implement ElGamal (or any other cryptographic protocol based on finite groups)
since the composition and inverse of type automorphisms (represented by finite hereditary
permutations [3]) can be computed in linear time. Clearly, type-based implementations are
going to be less efficient than an equivalent long integer-based ones which would make them
less desirable for conventional applications. But that alone can make them more desirable for
other uses like proof-of-work algorithms. Also of note is the fact that the above encryption
scheme preserves the structure of a : A. Which, for instance, means that Alice needs not
typecheck the decrypted a if she trusts Bob to typecheck his.
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SQL is widely adopted and used as a declarative language for accessing databases, e.g. for
storing, manipulating and retrieving data. Due to its importance and thanks to development of
formal methods, formal analysis of SQL queries attracts more and more attention. For instance,
lately, the equivalence of SQL queries, and primarily the query containment problem, have been
an area of active research. There are different formally defined semantics of SQL queries: set
semantics, bag semantics, bag-set semantics and combined approaches [4], as well as mechanized
semantics, called HoTTSQL, based on K-Relations and homotopy type theory [3]. Also, the
authors of [2] defined an SQL algebra that provides a semantics for SQL and formalized it
within the Coq proof assistant. All of these approaches deal with standalone SQL queries, and
the outcome is used by a query optimizer that performs query rewrites. However, SQL queries
are most often used within applications, where the database operations are embedded into the
programs written in a general purpose imperative programming language. With increasing
popularity of embedded devices, with low available memory and critical energy consumption,
SQL query performance is important so the embedded SQL approach becomes very popular
again [5]. In embedded SQL, statements prefixed with EXEC SQL keyword can be intermixed
with statements of the used programming language. Automated reasoning about functional
equivalence of two versions of such code is very important, for instance in the context of code
refactoring, or in the context of minimizing the number of pre-compiled queries [5]. This mix of
declarative and imperative semantics makes automated reasoning about such code a challenging
problem. To the best of our knowledge, there are no approaches addressing equivalence of two
pieces of code in a general purpose programming language with embedded SQL queries.

We propose a system for automated reasoning about SQL embedded into C functions with
a goal of checking functional equivalence among two such functions. The overall architecture
of the proposed system is given in the Figure 1. Each input function is split into two parts.

SMTc part. This part consists of a C-like function which contains undefined function calls
instead of the original SQL queries. This function is then analyzed by our open-source verifi-
cation tool LAV [6]. LAV uses SMT solving [1] for checking constructed correctness conditions
and for the purpose of this work was slightly extended. Undefined function calls introduced
by SQL queries are modelled as uninterpreted functions (denoted as sqlc) within formulas that
LAV generates (named SMTc). Descriptions of these uninterpreted functions are generated by
our SQL2SMT tool (formulas SMTsql) and make a link between formulas SMTc and SMTsql.

SMTsql part. This part consists of SQL queries, which are anayzed by the SQL2SMT tool.
SQL2SMT generates two kinds of formulas: generic formulas and formulas corresponding to the
concrete SQL statemets. The generic formulas introduce types for tables and rows, functions
and predicates for describing their connections and Cartesian product axioms for describing
table joins. The concrete SQL formulas introduce descriptions of the original SQL queries.

The result of a query may be (i) a single fact, (ii) a tuple or (iii) a sequence of tuples. Let us
first assume that the result of a query is a fact, i.e. a number. There are two possible outcomes
of execution of any SQL query: there is or there is not relevant data in the database. Execution
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Figure 1: The overall architecture of the system

of the embedded SQL statement returns at the same time whether there are relevant data in the
database, and the result itself. We model this as a function sqlc with a single return value that
depends on the first argument of the function call, being 0 for existence of the relevant data and
1 for the result itself. Formulas describing necessary and sufficient conditions of existence of
relevant data, and a value of the result if it exists, are based on the query itself. Transformation
of an SQL query to such formulas is based on SQL modified bag-set semantics (bag-set semantics
that introduces order over tuples) and the formula is finally rewritten in terms of the theory of
bit-vector arithmetic. If result of a query is a tuple, for efficiency reasons, instead of returning
it, we introduce a new argument to the function sqlc. This argument controls which single
value of the tuple is used and it corresponds to the standard SQL projections. Similarly, we
introduce one more argument for the case when there are several rows that should be selected
as results, corresponding to the cursors in embedded SQL.

In order to prove equivalence of two embedded SQL functions, it is necessary to assume
that for specified input conditions there is a unique value for the result in all the selected rows.
Otherwise, one cannot be sure which value could be returned by the database management
system, and the equivalence cannot and should not be established. Therefore, this assumption
is added at the step of constructing a final equivalence formula that is sent to an SMT solver.

The presented approach has been successfully applied on test cases of different sizes and
complexities. These examples are publicly available on the LAV page (http://argo.matf.bg.
ac.rs/?content=lav). The approach is still under development and we work on different kinds
of improvements, such as adding support for embedding different SQL data types.
Acknowledgements This work was partially supported by the Serbian Ministry of Science
grant 174021 and by COST action CA15123.
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This work is about an industrial application of type theory technology. We have developed
HeadREST, a language to model REST services that goes well beyond the descriptive power
of current languages. HeadREST is at the basis of an ambitious project addressing fundamen-
tal aspects of the API lifecycle; the language aims at supporting testing, validation, runtime
monitoring, and code generation.

REST (Representational State Transfer) is an architectural style regarded as an abstract
model of the web architecture and based on the concept of resource [3]. According to Fielding,
a resource R is a function MR(t) that associates to each time instant t a set of values, which can
be identifiers or representations of resources [4]. Identifiers are used to distinguish the resource
involved in an interaction. Representations capture the current state or the intended state of
the resource, and are used to perform actions on the resource.

We focus on REST applications that communicate over HTTP and interact with external
systems through web resources identified by Unique Resource Identifiers (URIs). Thus, actions
that can be performed on a resource correspond to requests for the execution of the methods
offered by HTTP (GET, POST, PUT, and DELETE). The metadata and data to be transferred
are sent, respectively, in the header and in the body of the request. As a result to a request a
response is produced containing metadata and data to be transferred back to the customer.

Different interface description languages (IDLs) have been purposely designed to support
the formal description of REST APIs. The most representative are probably Open API Ini-
tiative [6] (originally called Swagger), the RESTful API Modeling Language [7] (RAML), and
API Blueprint [1]. These IDLs allow a detailed description of the syntactic aspects of the data
transferred in REST interactions and are associated to a large number of tools. Being focused
on the structure of the data exchanged, they ignore important semantic aspects, including re-
lating different input/output data, the input against the state of the service, and the output
against the input.

Our approach is based on two key ideas:

• Types to express properties of states and of data exchanged in interactions and

• Pre- and post-condition to express the relationship between data sent in requests and that
obtained in responses, as well as the resulting state changes.

These ideas are embodied in HeadREST, a language built on the two fundamental concepts
of DMinor [2]:

• Refinement types, x:T where e, consisting of values x of type T that satisfy property e,
and

• A predicate, e in T, which returns true or false depending on whether the value of expres-
sion e is or is not of type T.

HeadREST allows to formally describe properties of data and to observe state changes of
REST APIs through a collection of assertions. Assertions take the form of Hoare triples [5].
In {φ} (a t) {ψ}, a is an action (GET, POST, PUT, or DELETE), t is an URI template, and φ
and ψ are boolean expressions. Formula φ, called the precondition, addresses the state in
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which the action is performed as well as the data transmitted in the request, whereas ψ, the
postcondition, addresses the state resulting from the execution of the action together with the
values transmitted in the response. The assertion reads

If a request for the execution of a over an expansion of t carries data satisfying φ
and the action is performed in a state satisfying φ, then the data transmitted in the
response satisfies ψ and so does the state resulting from the execution of the action.

A simple contact management system could be based on a new type

resource Contact

There may be many representations of such a resource. Here is one:

type NameAndEmail = {

name: (x: string where matches (/^[a-zA-Z]{3 ,15}$/, x)),

email: (x: string where contains("@", x))

}

An assertion describing a successful contact creation could be written as

{request in {body: NameAndEmail} &&

∀c:Contact. ∀r:NameAndEmail. r repof c ⇒ request.body.name 6= r.name

}

POST /contacts

{response.code == 200 &&

response in {body: NameAndEmail , header: {Location: URI}} &&

∃c:Contact. response.body repof c && response.header.Location uriof c

}

where request and response are builtin identifiers, and predicates repof and uriof describe
values associated to resources. The precondition asks the new contact name to be unique
across all contacts and their representations. In such a case, the postcondition signals success
(code 200) and states that response includes a representation and an URI of the newly created
Contact resource.

We have used HeadREST to describe different APIs, including a part of GitLab (800 lines
of spec code). We have developed an Eclipse plugin to validate HeadREST specifications and
a tool to automatically test REST APIs against specifications. These tools rely on an external
SMT to solve the semantic subtyping goals required by D-Minor [2]. We are further working
on a tool to generate server stubs and client SDKs from HeadREST specifications.
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Several authors, above all Katsumata [2], have recently considered type systems that support
quantifying the degree of effectfulness of computations via grade-annotated typing judgements
and function types. This means revisiting the ideas of type-and-effect systems [3] from static
analysis and marrying monads and effects [5] from functional programming, but now employing
the new mathematical tool of graded monads or some variation thereof.

A graded monad on a category amounts to a lax monoidal functor from a pomonoid to the
category of endofunctors on this base category. Elements of the pomonoid serve as grades of
effectfulness (i.e., ’effects’ in the terminology of type-and-effect systems). Graded monads are a
perfect fit for quantitative analysis of computational effects in a number of theoretical aspects.
In practice, however, they require considerable care. It is notoriously easy to slip and come up
with candidate examples of pomonoids or graded monads where some required equation fails.
How is it then to use them in practice, e.g., in certified programming theory?

In this work, which was mostly accomplished within the master’s project of the first author
[4], we tried graded monads out with Agda on three notions of effect—exceptions, nondetermin-
istic choice and readable-writable state. Inspired by the work of Benton et al. [1], on program
transformations for non-deterministic choice, we implemented the syntax and semantics of a
typed call-by-value programming language (with booleans and natural numbers) similar to the
computational lambda-calculus and proved correct a number of program equivalences that de-
pend on grading. We also implemented type inference for raw terms, including grade inference.

We considered the following gradings: exceptions—pure, must raise an exception, may raise
an exception; nondeterminism—at most n outcomes (also m..n outcomes); state—pure, may
read only, may write only, must write, may read and write. We departed from Benton et
al. [1] by using logical predicates instead of logical binary relations in the semantics and the
correctness proofs of program equivalences. Our type inference (where the emphasis is very
much on grade inference) derives the smallest type of a term typable in a given typed context;
in our raw terms, lambda-bound variables are type-annotated.

The Agda development consists of the following parts:

• pomonoids (optionally with an added upper semilattice structure),

• pomonoids for grading the effects of exceptions, nondetermistic choice and readable-
writable state,

• graded monads,

• graded monads for the effects of exceptions, nondeterministic choice, readable-writable
state,

• syntax of the typed language (the generic part and operations specific for each effect
considered),

• denotational semantics of the typed language,



• some effect and grading dependent program equivalences, proofs of their correctness,

• syntax of the raw language,

• type inference (including grade inference),

• soundness and completeness of type inference.

A unified approach to different effects should really be based on graded algebraic theories
rather than graded monads. With Georgy Lukyanov, the second author has conducted some
initial experiments in this direction, which is an unexplored territory also theoretically.

Acknowledgements T. Uustalu was supported by the Estonian Ministry of Education Re-
search institutional research grant no. IUT33-13.
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We construct a model of cubical type theory with a univalent and impredicative universe
in a category of cubical assemblies. We show that the cubical assembly model does not satisfy
the propositional resizing axiom.

We say a universe U in dependent type theory is impredicative if it is closed under arbitrary
dependent products: for an arbitrary type A and a function B : A → U , the dependent
product type

∏
x:AB(x) belongs to U . An interesting use of such an impredicative universe in

homotopy/cubical type theory is the impredicative encoding of a higher inductive type [Shu11]
as well as ordinary inductive types. For example, in cubical type theory [CCHM18] with an
impredicative universe, the unit circle is encoded as

S1 :=
∏

X:U

∏

x:X

Path(X,x, x)→ X : U

together with a base point b := λXxp.x : S1, a loop l := 〈i〉.λXxp.pi : Path(S1, b, b) and a re-
cursor r := λXxps.sXxp :

∏
X:U

∏
x:X Path(X,x, x)→ (S1 → X). Although the impredicative

encoding of a higher inductive type does not satisfy the induction principle in general, some
truncated higher inductive types have re�nements of the encodings satisfying the induction
principle [AFS18].

The �rst goal of this talk is to present a model of cubical type theory with a univalent and
impredicative universe. Since an impredicative universe is modeled in the category of assemblies
[LM91] where the impredicative universe classi�es modest families, our strategy is to construct
a model of type theory in the category of cubical objects in assemblies which we will call cubical
assemblies. There has been a nice set of axioms given by Orton and Pitts [OP16] for modelling
cubical type theory without universes of �brant types in an elementary topos equipped with an
interval object I. We will almost entirely follow them, but the category of cubical assemblies is
not an elementary topos. So our contribution is to show that the construction given by Orton
and Pitts works in a non-topos setting. For constructing the universe of �brant types, we can
use the right adjoint to the exponential functor (−)I in the same way as Licata, Orton, Pitts
and Spitters [LOPS18].

Voevodsky [Voe12] has proposed the propositional resizing axiom [Uni13, Section 3.5] which
asserts that every homotopy proposition is equivalent to some homotopy proposition in the
smallest universe. The propositional resizing axiom can be seen as a form of impredicativity for
homotopy propositions. Since the universe in the cubical assembly model is impredicative, one
might expect that the cubical assembly model satis�es the propositional resizing axiom. Indeed,
for a homotopy proposition A, there is a natural candidate A∗ for propositional resizing de�ned
as A∗ :=

∏
X:hProp(A → X) → X together with a function ηA := λaXh.ha : A → A∗, where

hProp is the universe of homotopy propositions in U . However, the propositional resizing axiom
fails in the cubical assembly model. We construct a concrete counterexample to propositional
resizing. Note that a homotopy proposition A admits propositional resizing if and only if the
function ηA : A → A∗ is an equivalence, so it su�ces to give a homotopy proposition Γ ` A
such that A does not have an inhabitant but A∗ does.
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The key fact is that in the category of assemblies, well-supported uniform objects are left
orthogonal to modest objects [Oos08]. In other words, for any well-supported uniform object A
and modest object X, the function λxa.x : X → (A→ X) is an isomorphism. Uniform objects
and modest objects in an internal presheaf category are de�ned pointwise, and well-supported
uniform presheaves are left orthogonal to modest presheaves. Here a presheaf is well-supported
if the unique morphism into the terminal presheaf is regular epi, which does not imply the
existence of a section. Hence, in order to give a counterexample to propositional resizing, it
su�ces to �nd a homotopy proposition Γ ` A in the cubical assembly model, that is, a presheaf
over the category of elements

∫
Γ equipped with the structures of homotopy proposition, that

is moreover well-supported and uniform but does not have a section.
For any family A of assemblies over Γ, the codiscrete cubical assembly ∆Γ ` ∇A over the

discrete cubical assembly ∆Γ is always a homotopy proposition, and this construction preserves
well-supportedness and uniformity. If ∇A has a section, then so does A. Thus, if A is a well-
supported and uniform family of assemblies that does not have a section, then the homotopy
proposition ∆Γ ` ∇A is a counterexample to propositional resizing. Finally we construct such
a family A of assemblies by hand.
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In homotopy type theory, a set is a type A such that for each x, y : A and p, q : x = y
we have p = q [9]. In other words, equality of A is proof-irrelevant. A setoid is a type A
together with an equivalence relation on A. From a set A we can construct a setoid, namely
A with the relation λxy. x = y. Conversely, from a setoid we can construct a set with quotient
types. For a type A and an equivalence relation R : A → A → hProp, the set quotient A/R
can be constructed as a higher inductive type with a point constructor cl : A → A/R, a path
constructor eqcl :

∏
x,y:AR x y → cl x = cl y, and one saying that A/R is a set [7].

Now let us go to dimension 1. A 1-type is a type A such that for each x, y : A the type x = y
is a set. The 1-dimensional version of setoids is groupoids. A groupoid on A consists of a family
G : A → A → hSet, an identity e :

∏
x:AG x x, and operations ()−1 :

∏
x,y:AG x y → G y x

and (·) :
∏
x,y,z:AG x y → G y z → G x z satisfying the usual laws for associativity, neutrality,

and inverses. We write grpd A for the type of groupoids on A.
Every 1-type A gives rise to a path groupoid P A on A defined by λxy. x = y. However,

can we go the other direction? More precisely, given a groupoid G on a type A, our goal is to
construct a 1-type gquot A G together with a map gcl : A → gquot A G such that for each
x, y : A the types gcl x = gcl y and G x y are equivalent. To do so, we use the following higher
inductive type, which we call the groupoid quotient.

Higher Inductive Type gquot (A : Type) (G : grpd A) :=
| gcl : A→ gquot A G

| gcleq :
∏
x,y:AG x y → gcl x = gcl y

| ge :
∏
x:A gcleq x (e x) = refl

| ginv :
∏
x,y:A

∏
g:G x y gcleq y x (g−1) = (gcleq x y g)−1

| gconcat :
∏
x,y,z:A

∏
g1:G x y

∏
g2:G y z gcleq x z (g1 · g2) = gcleq x y g1 @ gcleq y z g2

| gtrunc :
∏
x,y:gquot AG

∏
p,q:x=y

∏
r,s:p=q r = s

To derive the elimination and computation rules of this type, we use the method by Dybjer
and Moenclaey [4]. The equations ge, ginv, and gconcat show that gcleq is a homomorphism
of groupoids. The constructor gtrunc guarantees that gquot A G is a 1-type.

For quotients, the types cl x = cl y and R x y are equivalent [7]. For gquot A G, we have a
similar statement.

Proposition. For every x, y : A the types gcl x = gcl y and G x y are equivalent.

Each equivalence relation induces a groupoid. The quotient of such an induced groupoid
coincides with the set quotient.

Proposition. If A is a type and R is an equivalence relation on A, then A/R ' gquot A R
where R is the groupoid induced by R.

In addition, every 1-type is the groupoid quotient of its path groupoid.

Proposition. For all 1-types A, we have A ' gquotA (P A) with P A the path groupoid on A.

The category of groupoids has products and coproducts. More precisely, for groupoids
G1 : grpd A and G2 : grpd B, we define G1×G2 : grpd (A×B) where the elements are pairs of
G1 and G2 and the operations are defined pointwise. Similarly, we define G1+G2 : grpd (A+B).
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Proposition. The gquot construction commutes with sums and products. More precisely,

gquot (A×B) (G1 ×G2) ' gquot A G1 × gquot B G2,

gquot (A+B) (G1 +G2) ' gquot A G1 + gquot B G2.

The proofs of these propositions have been formalized in Coq using the HoTT library [2]
and they are available at https://github.com/nmvdw/groupoids.

Conclusion and Further Work. Groupoids form a model of type theory [5, 8]. Since 1-
types are preserved under dependent products, sums, and identity types [9], they also form a
model. This work gives a partial internal comparison between these models.

Dybjer and Moenclaey give an interpretation of higher inductive types in the groupoid model
[4]. Internalizing their construction and applying gquot gives an interpretation of 1-HITs as
1-types. The first proposition then characterizes ||x = y||0 for this interpretation of higher
inductive types.

Another interesting generalization would be using higher groupoids instead of plain groupoids.
One can develop a theory of higher groupoids in HoTT similar to the theory of higher groups
[3]. This could give a comparison between n-types and n-groupoids. In addition, a full version
would be a comparison between ω-groupoids and types [1, 6].

Acknowledgements. We thank Joshua Moerman for giving the inspiration for the last
proposition.
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Typing every λ-term with infinitary non-idempotent types
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Infinite types and formulas are known to be unsound, e.g., they allow to type Ω = ∆ ∆ (with ∆ = λx.x x),
the auto-autoapplication and they thus do not ensure any form of normalization/productivity. Moreover, in most
infinitary frameworks, it is not difficult to define a type R that can be assigned to every λ-term (see below).

A first observation is that one can inhabit every type with Ω = ∆ ∆: let A be any formula. We just define
the infinite formula FA by FA := (((. . .)→ A)→ A)→ A i.e. FA = FA → A and we consider:

x : FA ` x : FA i.e. FA → A x : FA ` x : FA
x : FA ` xx : A

` λx.x x : FA → A i.e. FA

x : FA ` x : FA x : FA ` x : FA
x : FA ` xx : A
` λx.x x : FA

` Ω : A

Thus, every type A is inhabited by Ω. But given a λ-term t, what types A does t inhabit? A first observation
is that every λ-term can easily be typed when infinite types are allowed: let us just define R (standing for
“reflexive”) by R = R → R. Thus, R = (R → R) → (R → R) = . . . Then, it is very easy to inductively type
every term with R. In the inductive steps below, Γ denotes a context that assigns R to each variable:

Γ;x : R ` x : R
ax

Γ;x : R ` t : R

Γ ` λx.t : R→ R (= R)
abs

Γ ` t : R (=R→ R) Γ ` u : R

Γ ` t u : R
app

Therefore, every λ-term inhabits the type R. Yet, this does not answer the former question: what types does
a term t inhabit? This question has actually no simple answer (we will sketch the reasons why below) and we
chiefly focus on one aspect of this problem, namely, the typing constraints caused by the order of the λ-terms.
Intuitively, the order of a λ-term t is its arity i.e. it is the supremal n such that t →∗

β λx1 . . . xn.u (for some
term u): the order of t is the number of abstractions that one can output from t. For instance, Ω is of order 0
(it is a zero term), the head normal form (HNF) λx1x2.x u1 u2 u3 (with u1, u2, u3 terms) is of order 2 and
the term Yλ := (λx.λy.xx)λx.λy.xx (satisfying Yλ →β λy.Yλ and thus, Yλ →n

β λy1 . . . λyn.Yλ) is of infinite order.
The order of a type is the number of its top-level arrows e.g., if o1, o2 are type atoms, o1 → o1, o1,

o1 → o2 → o1 and (o1 → o2)→ o1 are of respective orders 1, 0, 2, 1. Via the Curry-Howard correspondence, the
constructor λx corresponds to the introduction of an implication, and so, in most type systems, a typed term
of the form λx1 . . . xn.u is typed with an arrow of order > n. For instance, if λx.λy.u is typed, then it is so
with a type of the form A → B → C. Moreover, if a type system satisfies subject reduction, the order of B
statically gives an upper bound to the order of t (static meaning without reduction). A finite type has a finite
order whereas the finite term Yλ has an infinite order. Yet, unsurprisingly, an infinite type may have an infinite
order e.g., R defined by R = R → R above. This confirms that the typing of any term t with R is trivial and
does not bring any information, since the order of a term is of course 6∞.

Intersection type systems (i.t.s.), introduced by Coppo-Dezani [3], generally satisfy subject reduction and
subject expansion, meaning that typing is stable under anti-reduction. Those systems feature a type construc-
tor ∧ (intersection) and are designed to characterize semantic properties like normalization [6]. From subject
expansion and the typing of normal forms (NF), i.t.s. are actually able to capture the order of some λ-terms.
For instance, if an i.t.s. characterizes head normalization (HN), then, every HN term t of order p is typable
with a type whose order is also equal to p (and not only bounded below by p). Why? Such an i.t.s. usually
features arrow types having an empty source (that we generically denote by ∅), meaning that the underlying
functions do not look at their argument. Namely, if t : ∅ → B, then t u is typable with B for any term u. This
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allows us to easily type any HNF while capturing its order: one just assigns ∅ → . . . . . . ∅ → o (order q) to the
head variable x, so that x t1 . . . tq is typed with the type atom o and the HNF λx1 . . . xp.x t1 . . . tq, whose order
is p, is typed with an arrow type of order p. Then, by subject expansion, one concludes that every HN term of
order p is typable with a type of order p. This method generalizes to other notions of normalization.

Our main contribution here is to prove that the order of every λ-term can be captured when considering
infinite types. We have sketched above the reason why i.t.s. capture the order of the typed terms in the
normalizing case: this reduces to typing the “partial” normals forms i.e. for a HNF λx1 . . . xp.x t1 . . . tq, typing
just the head variable x, which cannot be substituted by a β-reduction step: intuitively, x is stable. In contrast,
if a variable x is not stable, it may be substituted in a reduction sequence with a term u i.e. x is subject to
implicit and unforseeable typing constraints: there is no static way to assign a suitable type to a variable which
is not stable in a given term t. Unfortunately, some terms—the so-called mute terms [1]—do not ever give rise
to stable positions and are thus totally unproductive: t is mute iff any reduct of t may be reduced to a redex
e.g., Ω is mute. Implicit typing constraints make that there is no canonical technique to type the order of a mute
term.

Then, we must actually shift the problem a little: instead of trying to capture the orders of λ-terms, we will
actually study typability in a coinductive intersection type system, namely system S, that we introduced in [7].
This system takes its name from the sequences (families of types indexed by sets of integers) that it uses to
represent intersection. System S has several features of interest: intersection is not idempotent and it is relevant,
meaning that weakening is not allowed. Non-idempotency [5, 4] and relevance make system S resource-aware.
Moreover, system S is rigid : contrary to most non-idempotent intersection type systems, it features pointers
and proof reduction is processed in a deterministic way. Relevance makes the argument at the beginning of this
article proving that every term is typable fail e.g., if x does not occur free in t, then λx.t can only have a type
of the form ∅ → B in system S. In particular, in system S it is not possible to assign the (non-idempotent
counterpart of) the type R satisfying R = R → R to every abstraction and the induction does not work. On
the other hand, the rigidity of system S (and the pointers that it gives rise to) enables expressing a notion of
derivation candidate, which is fundamental to study typability in the unproductive case. The rigidity and
the resource-awareness of system S makes it the ideal framework to study typability in the infinitary case. We
propose a solution to overcome the problem of unproductivity, inspired by first order model theory and resorting
to a finite reduction strategy. This constitutes our main technical innovation, which allows us to prove:

Theorem:
• Every term is typable in most infinitary type systems, including the relevant ones.
• Moreover, the order of every term can be captured in coinductive intersection type systems: if t is of order
n, then there exists a type B of order n and a context Γ such that Γ ` t : B is derivable.

As a corollary, our work proves that, in the infinitary relational model [2], every term has a non-empty denotation.
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Abstract

Type theories with equality reflection, such as extensional type theory (ETT), are convenient theo-
ries in which to formalise mathematics, as they allow to consider provably equal terms as convertible.
Although type-checking is undecidable in this context, variants of ETT have been implemented, for ex-
ample in NuPRL [3] and more recently in Andromeda [2]. The actual objects that can been checked are
not proof-terms, but derivations of proof-terms. This suggest that any derivation of ETT can be trans-
lated as a typecheckable proof-term of intentional type theory (ITT). However, this result, investigated
categorically by Hofmann [5] in 1995, and 10 years later more syntactically by Oury [6], has never given
rise to an effective translation. In this paper, we provide the first syntactical translation from ETT to
ITT with uniqueness of identity proof and functional extensionality. This translation has been defined
and proven correct in Coq [4] and gives rise to an executable plugin that translates a derivation in ETT
into an actual Coq typing judgment.

Extensional Type Theory is distinguished from the usual ITT by the reflection rule

Γ `x e : u =A v

Γ `x u ≡ v : A

where u =A v denotes the usual identity type. This setting can be highly practical when considering for
instance the type of lists indexed by their length—what we usually call vectors.

Inductive vec A : nat -> Type :=
| vnil : vec A 0
| vcons : A -> forall n, vec A n -> vec A (S n).
Arguments vnil {_}. Arguments vcons {_} _ _ _.

Fixpoint rev {A n m} (v : vec A n) (acc : vec A m) : vec A (n + m) :=
match v with vnil => acc
| vcons a n’ v’ => rev v’ (vcons a m acc)
end.

In this example, Coq will complain that rev v’ (vcons a m acc) has type vec A (n’ + S m) whereas
vec A (S n’ + m) was expected. To avoid this, we need to transport along a proof of the equality
n’ + S m = S n’ + m. In ETT, thanks to the reflection rule, the terms become convertible and such a
definition can be accepted as is.

Eliminating reflection constructively. Hofmann already proved consistency of ETT, but Oury went
further in proposing a translation that goes from ETT to ITT (plus Streicher’s axiom K [8], functional
extensionality and an extra axiom). Our contribution is mainly based on Oury’s proof but with small
differences that allow us to translate into ITT with axiom K and functional extensionality only. Our main
theorem can be summarised as follows, where `i and `x denote ITT and ETT judgments respectively, @ is
a syntactical congruence that ignores transports (t @ p∗ t when t @ t), and ∼= is heterogenous equality.

Theorem 1 (Translation).

• If Γ `x t : T then for any `i Γ with Γ @ Γ there exist t @ t and T @ T such that Γ `i t : T ,



• If Γ `x u ≡ v : A then for any `i Γ with Γ @ Γ there exist A @ A,A @ A
′
, u @ u, v @ v and e such that

Γ `i e : u A
∼=A

′ v.

The third axiom is about heterogenous equality and states its congruence with application.

Γ `i p : u1 ∼= u2 Γ `i q : v1 ∼= v2

Γ `i heqapp p q : u1 v1 ∼= u2 v2

The way we avoid its use is by having fully annotated terms in both the source and the target: for instance
we write λ(x : A).B.t for the λ-abstraction (mentioning both the domain and the codomain) and u@x:A.B v
for the application of u to v. This gives us stronger assumptions, in particular we get that the codomains
are equal as well. This technicality tends to justify the belief (shared with Andrej Bauer) that the use of
reflection asks for a careful handling of terms (while there is no evidence that having unanotated terms can
lead to inconsistencies or unwanted results).

One of the other improvements we make is providing evidence that the proof is indeed constructive—
which is not clear from the use of existential quantifiers—through a Coq formalisation [7].

TemplateCoq paving the way to a plugin. Our formalisation is done in a setting similar to Template-
Coq [1], a Coq library that allows reflection—this time in the sense of reification—of Coq itself: an inductive
represents the internal syntax of Coq and the plugin provides facilities to reify it into actual Coq terms and
back. We even provide a (non proven) translation from our internal ITT to TemplateCoq. This means that
starting from a derivation in our ETT, we can get a Coq term that corresponds to its translation. Pushing
this even further could lead to a plugin in which one ideally could write:

ETT Fixpoint rev {A n m} (v : vec A n) (acc : vec A m) : vec A (n+m) :=
match v with vnil => acc
| vcons a n’ v’ => rev v’ (vcons a m acc)
end.

Next Obligation. omega. (* Proof that n’ + S m = S n’ + m *) Qed.

The point being, failed conversions would become obligations of equalities, once proven this will produce an
ETT derivation that gets translated into a Coq term.

Composing translations. In another direction, this translation also allows for the formalisation of trans-
lations that target ETT rather than ITT and still get mechanised proofs of (relative) consistency by com-
position with this ETT to ITT translation.
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